A nonsense mutation of the sodium channel gene SCN2A in a patient with intractable epilepsy and mental decline.

نویسندگان

  • Kazusaku Kamiya
  • Makoto Kaneda
  • Takashi Sugawara
  • Emi Mazaki
  • Nami Okamura
  • Mauricio Montal
  • Naomasa Makita
  • Masaki Tanaka
  • Katsuyuki Fukushima
  • Tateki Fujiwara
  • Yushi Inoue
  • Kazuhiro Yamakawa
چکیده

Mutations, exclusively missense, of voltage-gated sodium channel alpha subunit type 1 (SCN1A) and type 2 (SCN2A) genes were reported in patients with idiopathic epilepsy: generalized epilepsy with febrile seizures plus. Nonsense and frameshift mutations of SCN1A, by contrast, were identified in intractable epilepsy: severe myoclonic epilepsy in infancy (SMEI). Here we describe a first nonsense mutation of SCN2A in a patient with intractable epilepsy and severe mental decline. The phenotype is similar to SMEI but distinct because of partial epilepsy, delayed onset (1 year 7 months), and absence of temperature sensitivity. A mutational analysis revealed that the patient had a heterozygous de novo nonsense mutation R102X of SCN2A. Patch-clamp analysis of Na(v)1.2 wild-type channels and the R102X mutant protein coexpressed in human embryonic kidney 293 cells showed that the truncated mutant protein shifted the voltage dependence of inactivation of wild-type channels in the hyperpolarizing direction. Analysis of the subcellular localization of R102X truncated protein suggested that its dominant negative effect could arise from direct or indirect cytoskeletal interactions of the mutant protein. Haploinsufficiency of Na(v)1.2 protein is one plausible explanation for the pathology of this patient; however, our biophysical findings suggest that the R102X truncated protein exerts a dominant negative effect leading to the patient's intractable epilepsy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Nonsense Mutation in CDKL5 Gene in a Male Patient with Early Onset Refractory Epilepsy: a Case Report

Background The X-linked cyclin-dependent kinase like 5 (CDKL5/STK9) gene has been shown to be responsible for a severe encephalopathy condition characterized by early onset of epilepsy and severe developmental delay. CDKL5 mutations have been shown to be more frequent among female patients. Results Here we report a 6- month male patient, second child of a healthy non consanguineous in the Irani...

متن کامل

Ion channels and epilepsy

Ion channels play a central role in the generation and control of neuronal excitability. Genetic defects in ion channels are associated with several forms of human idiopathic epilepsies. These defects range from nonsense and missense point mutations to insertion, truncation and splice site mutations producing altered, non-functional or negative-dominant channel subunits. To date, 12 mutated gen...

متن کامل

Sodium channel mutations in epilepsy and other neurological disorders.

Since the first mutations of the neuronal sodium channel SCN1A were identified 5 years ago, more than 150 mutations have been described in patients with epilepsy. Many are sporadic mutations and cause loss of function, which demonstrates haploinsufficiency of SCN1A. Mutations resulting in persistent sodium current are also common. Coding variants of SCN2A, SCN8A, and SCN9A have also been identi...

متن کامل

Epilepsy and other neurological disorders Ion channels and epilepsy

Ion channels play a central role in the generation and control of neuronal excitability. Genetic defects in ion channels are associated with several forms of human idiopathic epilepsies. These defects range from nonsense and missense point mutations to insertion, truncation and splice site mutations producing altered, non-functional or negative-dominant channel subunits. To date, 12 mutated gen...

متن کامل

A sodium channel mutation linked to epilepsy increases ramp and persistent current of Nav1.3 and induces hyperexcitability in hippocampal neurons.

Voltage-gated sodium channelopathies underlie many excitability disorders. Genes SCN1A, SCN2A and SCN9A, which encode pore-forming alpha-subunits Na(V)1.1, Na(V)1.2 and Na(V)1.7, are clustered on human chromosome 2, and mutations in these genes have been shown to underlie epilepsy, migraine, and somatic pain disorders. SCN3A, the gene which encodes Na(V)1.3, is part of this cluster, but until r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 24 11  شماره 

صفحات  -

تاریخ انتشار 2004