SI-Based Scheduling of Parameter Sweep Experiments on Federated Clouds

نویسندگان

  • Elina Pacini
  • Cristian Mateos
  • Carlos García Garino
چکیده

Scientists and engineers often require huge amounts of computing power to execute their experiments. This work focuses on the federated Cloud model, where custom virtual machines (VM) are launched in appropriate hosts belonging to different providers to execute scientific experiments and minimize response time. Here, scheduling is performed at three levels. First, at the broker level, datacenters are selected by their network latencies via three policies – Lowest-Latency-Time-First, First-Latency-Time-First, and Latency-Time-In-Round–. Second, at the infrastructure level, two Cloud VM schedulers based on Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) for mapping VMs to appropriate datacenter hosts are implemented. Finally, at the VM level, jobs are assigned for execution into the preallocated VMs. Simulated experiments show that the combination of policies at the broker level with ACO and PSO succeed in reducing the response time compared to using the broker level policies combined with Genetic Algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An ACO-inspired algorithm for minimizing weighted flowtime in cloud-based parameter sweep experiments

Parameter Sweep Experiments (PSEs) allow scientists and engineers to conduct experiments by running the same program code against different input data. This usually results in many jobs with high computational requirements. Thus, distributed environments, particularly Clouds, can be employed to fulfill these demands. However, job scheduling is challenging as it is an NPcomplete problem. Recentl...

متن کامل

ACO-based dynamic job scheduling of parametric computational mechanics studies on Cloud Computing infrastructures

Parameter Sweep Experiments (PSEs) allow scientists to perform simulations by running the same code with different input data, which typically results in many CPU-intensive jobs and thus computing environments such as Clouds must be used. Job scheduling is however challenging due to its inherent NP-completeness. Therefore, some Cloud schedulers based on Swarm Intelligence (SI) techniques, which...

متن کامل

Distributed job scheduling based on Swarm Intelligence: A survey

Scientists and engineers need computational power to satisfy the increasing resource intensive nature of their simulations. For example, running Parameter Sweep Experiments (PSE) involve processing many independent jobs, given by multiple initial configurations (input parameter values) against the same program code. Hence, paradigms like Grid Computing and Cloud Computing are employed for gaini...

متن کامل

An Evaluation of Economy-based Resource Trading and Scheduling on Computational Power Grids for Parameter Sweep Applications

Computational Grids are becoming attractive and promising platforms for solving large-scale (problem solving) applications of multi-institutional interest. However, the management of resources and scheduling computations in the Grid environment is a complex undertaking as they are (geographically) distributed, heterogeneous in nature, owned by different individuals or organisations with their o...

متن کامل

Dynamic Scheduling based on Particle Swarm Optimization for Cloud-based Scientific Experiments

Parameter Sweep Experiments (PSEs) allow scientists to perform simulations by running the same code with different input data, which results in many CPU-intensive jobs and thus computing environments such as Clouds must be used. Our goal is to study private Clouds to execute scientific experiments coming from multiple users, i.e., our work focuses on the Infrastructure as a Service (IaaS) model...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014