Non-Asymptotic Delay Bounds for Multi-Server Systems with Synchronization Constraints

نویسندگان

  • Markus Fidler
  • Brenton D. Walker
  • Yuming Jiang
چکیده

Multi-server systems have received increasing attention with important implementations such as Google MapReduce, Hadoop, and Spark. Common to these systems are a fork operation, where jobs are first divided into tasks that are processed in parallel, and a later join operation, where completed tasks wait until the results of all tasks of a job can be combined and the job leaves the system. The synchronization constraint of the join operation makes the analysis of fork-join systems challenging and few explicit results are known. In this work, we model fork-join systems using a max-plus server model that enables us to derive statistical bounds on waiting and sojourn times for general arrival and service time processes. We contribute end-to-end delay bounds for multi-stage fork-join networks that grow in O(h ln k) for h fork-join stages, each with k parallel servers. We perform a detailed comparison of different multiserver configurations and highlight their pros and cons. We also include an analysis of single-queue fork-join systems that are nonidling and achieve a fundamental performance gain, and compare these results to both simulation and a live Spark system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Time Mix Synchronization of Delay Fractional-Order Chaotic Systems

Chaos synchronization of coupled fractional order differential equation is receiving increasing attention because of its potential applications in secure communications and control processing. The aim of this paper is synchronization between two identical or different delay fractional-order chaotic systems in finite time. At first, the predictor-corrector method is used to obtain the solutions ...

متن کامل

Computer Network Time Synchronization using a Low Cost GPS Engine

Accurate and reliable time is necessary for financial and legal transactions, transportation, distribution systems, and many other applications. Time synchronization protocols such as NTP (the Network Time Protocol) have kept clocks of such applications synchronized to each other for many years. Nowadays there are many commercial GPS based NTP time server products at the market but they almost ...

متن کامل

Fractional order robust adaptive intelligent controller design for fractional-order chaotic systems with unknown input delay, uncertainty and external disturbances

In this paper, a fractional-order robust adaptive intelligent controller (FRAIC) is designed for a class of chaotic fractional order systems with uncertainty, external disturbances and unknown time-varying input time delay. The time delay is considered both constant and time varying. Due to changes in the equilibrium point, adaptive control is used to update the system's momentary information a...

متن کامل

Adaptive Consensus Control for a Class of Non-affine MIMO Strict-Feedback Multi-Agent Systems with Time Delay

In this paper, the design of a distributed adaptive controller for a class of unknown non-affine MIMO strict-feedback multi agent systems with time delay has been performed under a directed graph. The controller design is based on dynamic surface control  method. In the design process, radial basis function neural networks (RBFNNs) were employed to approximate the unknown nonlinear functions. S...

متن کامل

Performance Analysis of Subspace Based Synchronization Algorithms for Multi-rate DS-CDMA Systems

The performance of subspace based delay estimation algorithms for multi-rate asynchronous DS-CDMA systems is investigated. Two multi-rate access schemes, multi-code (MC) access and variable-spreading-length (VSL) access, are considered. A subspace based algorithm that can explicitly exploit the redundant information introduced by the multi-rate nature of the signal is proposed. A two stage algo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1610.06309  شماره 

صفحات  -

تاریخ انتشار 2016