Computational Cancer Biology: An Evolutionary Perspective

نویسندگان

  • Niko Beerenwinkel
  • Chris D. Greenman
  • Jens Lagergren
چکیده

Cancer is a leading cause of death worldwide and represents one of the biggest biomedical research challenges of our time. Tumor progression is caused by somatic evolution of cell populations. Cancer cells expand because of the accumulation of selectively advantageous mutations, and expanding clones give rise to new cell subpopulations with increasingly higher somatic fitness (Fig 1). In the 1970s, Nowell and others established this somatic evolutionary view of cancer [1]. Today, computational biologists have the opportunity to take advantage of large-scale molecular profiling data in order to carve out the principles of tumor evolution and to elucidate how it manifests across cancer types. Analogous to other evolutionary studies, mathematical modeling will be key to the success of understanding the somatic evolution of cancer [2]. In general, cancer research involves a range of clinical, epidemiological, and molecular approaches, as well as mathematical and computational modeling. An early and very successful example of mathematical modeling was the work of Nordling [3] and of Armitage and Doll [4]. In the 1950s, long before cancer genome data was available, they analyzed cancer incidence data and postulated, based on the observed age-incidence curves, that cancer is a multistep process. In search of these rate-limiting events, cancer progression was then linked to the accumulation of genomic alterations. Since then, the evolutionary perspective on cancer has proven useful in many instances, and the mathematical theory of cancer evolution has been developed much further. However, little clinical benefit could be gained from this approach so far. Much of evolutionary modeling in general, and of cancer in particular, has remained conceptual or qualitative, either because of strong simplifications in the interest of mathematical tractability or lack of informative data. Next-generation sequencing (NGS) technologies and their various applications have changed this situation fundamentally [5]. Today, cancer cells can be analyzed in great detail at the molecular level, and tumor cell populations can be sampled extensively. Driven by this technological revolution, large numbers of high-dimensional molecular profiles of tumors, and even of individual cancer cells, are collected by cancer genome consortia, as well as by many individual labs. Large catalogs of cancer genomes, epigenomes, transcriptomes, proteomes, and other molecular profiles are generated to assess variation among tumors from different patients (intertumor heterogeneity) as well as among individual cells of single tumors (intratumor heterogeneity). These data hold the promise not only of new cancer biology discoveries but also of progress in cancer diagnostics and treatment. Analyzing these complex data and interpreting them in the context of ongoing somatic evolution, disease progression, and treatment response is a major challenge, and the prospects to

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In silico analysis for determining the deleterious nonsynonymous single nucleotide polymorphisms of BRCA genes

Recent advances in DNA sequencing techniques have led to an increase in the identification of single nucleotide polymorphisms (SNPs) in BRCA1 and BRCA2 genes, but no further information regarding the deleterious probability of many of them is available (Variants of Unknown Significance/VUS). As a result, in the current study, different sequence- and structure-based computation...

متن کامل

phyC: Clustering cancer evolutionary trees

Multi-regional sequencing provides new opportunities to investigate genetic heterogeneity within or between common tumors from an evolutionary perspective. Several state-of-the-art methods have been proposed for reconstructing cancer evolutionary trees based on multi-regional sequencing data to develop models of cancer evolution. However, there have been few studies on comparisons of a set of c...

متن کامل

The evolutionary origin of genetic instability in cancer development.

The standard model of carcinogenesis is currently being questioned. The main controversy concerns genetic instability and has links to fundamental questions in evolutionary biology. This paper aims to clarify the underlying conflict between the linear configuration of the standard model and the non-linear dynamics of Darwinian evolution. It addresses the problem of applying the concept of clona...

متن کامل

A Dominant Evolutionary Theme Emerges to Better Predict Clinical Outcomes for Cancer.

Despite the decades long battle since the “war on cancer” was first declared, major breakthroughs toward improving clinical outcomes have remained elusive. Now, with advanced sequencing, scientists have increasingly entered the fray from an evolutionary perspective toward cancer in the hopes of gaining new insights. Chen and He (2016) have used a new computational approach to show that as tumor...

متن کامل

Understanding enzyme function evolution from a computational perspective.

In this review, we will explore recent computational approaches to understand enzyme evolution from the perspective of protein structure, dynamics and promiscuity. We will present quantitative methods to measure the size of evolutionary steps within a structural domain, allowing the correlation between change in substrate and domain structure to be assessed, and giving insights into the evolvab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2016