Isolation, characterization, and functional expression of cDNAs encoding NADH-dependent methylenetetrahydrofolate reductase from higher plants.
نویسندگان
چکیده
Methylenetetrahydrofolate reductase (MTHFR) is the least understood enzyme of folate-mediated one-carbon metabolism in plants. Genomics-based approaches were used to identify one maize and two Arabidopsis cDNAs specifying proteins homologous to MTHFRs from other organisms. These cDNAs encode functional MTHFRs, as evidenced by their ability to complement a yeast met12 met13 mutant, and by the presence of MTHFR activity in extracts of complemented yeast cells. Deduced sequence analysis shows that the plant MTHFR polypeptides are of similar size (66 kDa) and domain structure to other eukaryotic MTHFRs, and lack obvious targeting sequences. Southern analyses and genomic evidence indicate that Arabidopsis has two MTHFR genes and that maize has at least two. A carboxyl-terminal polyhistidine tag was added to one Arabidopsis MTHFR, and used to purify the enzyme 640-fold to apparent homogeneity. Size exclusion chromatography and denaturing gel electrophoresis of the recombinant enzyme indicate that it exists as a dimer of approximately 66-kDa subunits. Unlike mammalian MTHFR, the plant enzymes strongly prefer NADH to NADPH, and are not inhibited by S-adenosylmethionine. An NADH-dependent MTHFR reaction could be reversible in plant cytosol, where the NADH/NAD ratio is 10(-3). Consistent with this, leaf tissues metabolized [methyl-(14)C]methyltetrahydrofolate to serine, sugars, and starch. A reversible MTHFR reaction would obviate the need for inhibition by S-adenosylmethionine to prevent excessive conversion of methylene- to methyltetrahydrofolate.
منابع مشابه
Microsomal electron transfer in higher plants: cloning and heterologous expression of NADH-cytochrome b5 reductase from Arabidopsis.
AtCBR, a cDNA encoding NADH-cytochrome (Cyt) b5 reductase, and AtB5-A and AtB5-B, two cDNAs encoding Cyt b5, were isolated from Arabidopsis. The primary structure deduced from the AtCBR cDNA was 40% identical to those of the NADH-Cyt b5 reductases of yeast and mammals. A recombinant AtCBR protein prepared using a baculovirus system exhibited typical spectral properties of NADH-Cyt b5 reductase ...
متن کاملBacterial Expression and Functional Characterization of A Naturally Occurring Exon6-less Preprochymosin cDNA
Chymosin (Rennin EC 3.4.23.4), an aspartyl proteinase, is the major proteolytic enzyme in the fourthstomach of the unweaned calf, and it is formed by proteolytic activation of its zymogene, prochymosin.Following the cloning of synthesized cDNAs on mRNA pools extracted from the mucosa of the calf fourthstomach, we have identified an alternatively spliced form of preprochymosin ...
متن کاملPurification and properties of NADH-dependent 5, 10-methylenetetrahydrofolate reductase (MetF) from Escherichia coli.
A K-12 strain of Escherichia coli that overproduces methylenetetrahydrofolate reductase (MetF) has been constructed, and the enzyme has been purified to apparent homogeneity. A plasmid specifying MetF with six histidine residues added to the C terminus has been used to purify histidine-tagged MetF to homogeneity in a single step by affinity chromatography on nickel-agarose, yielding a preparati...
متن کاملOver - expression Effect of Gene Encoding 3-hydroxy-3-Methylglutaryl-CoA Reductase on Production of Taxol in Iranian Hazel (Corylus avellana L.)
Background: Sustainable and commercial production of taxol as an anti cancer drug is a critical point to its clinical application. Nowadays, hazel because of rapid growth and wide range distribution is considered as an alternative source of Taxol. Objective: To increase taxol production the cDNA encoding 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) from Iranian hazel (GeneBank accession num...
متن کاملCloning and characterization of the xyl1 gene, encoding an NADH-preferring xylose reductase from Candida parapsilosis, and its functional expression in Candida tropicalis.
Xylose reductase (XR) is a key enzyme in D-xylose metabolism, catalyzing the reduction of D-xylose to xylitol. An NADH-preferring XR was purified to homogeneity from Candida parapsilosis KFCC-10875, and the xyl1 gene encoding a 324-amino-acid polypeptide with a molecular mass of 36,629 Da was subsequently isolated using internal amino acid sequences and 5' and 3' rapid amplification of cDNA end...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 274 51 شماره
صفحات -
تاریخ انتشار 1999