02 4 v 1 2 9 O ct 1 99 7 Time - Reversible Dynamical Systems for Turbulence

نویسندگان

  • L. Biferale
  • D. Pierotti
  • A. Vulpiani
چکیده

Dynamical Ensemble Equivalence between hydrodynamic dissipa-tive equations and suitable time-reversible dynamical systems has been investigated in a class of dynamical systems for turbulence. The reversible dynamics is obtained from the original dissipative equations by imposing a global constraint. We find that, by increasing the input energy, the system changes from an equilibrium state to a non-equilibrium stationary state in which an energy cascade, with the same statistical properties of the original system, is clearly detected. To the memory of Giovanni Paladin.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h - ph / 9 91 00 16 v 1 1 1 O ct 1 99 9 GEOMETRICAL AND OPERATIONAL ASPECTS OF IRREVERSIBILITY

In the statistical description of dynamical systems, an indication of the irreversibility of a given state change is given geometrically by means of a (pre-)ordering of state pairs. Reversible state changes of classical and quantum systems are shown to be represented by isometric state transformations. An operational distinction between reversible and irreversible dynamics is given and related ...

متن کامل

ha o - dy n / 99 10 02 0 v 1 1 4 O ct 1 99 9 A Stochastic Approach to the Construction of One - Dimensional Chaotic Maps with Prescribed Statistical Properties

We use a recently found parametrization of the solutions of the inverse Frobenius-Perron problem within the class of complete unimodal maps to develop a Monte-Carlo approach for the construction of one-dimensional chaotic dynamical laws with given statistical properties, i.e. invariant density and autocorrelation function. A variety of different examples are presented to demonstrate the power o...

متن کامل

ar X iv : s ol v - in t / 9 70 40 03 v 1 2 A pr 1 99 7 Convergent Normal Forms of Symmetric Dynamical Systems

It is shown that the presence of Lie-point-symmetries of (non-Hamiltonian) dynamical systems can ensure the convergence of the coordinate transformations which take the dynamical sytem (or vector field) into Poincaré-Dulac normal form.

متن کامل

ar X iv : h ep - l at / 9 71 00 86 v 1 2 4 O ct 1 99 7 1 Applications of the Eigenmodes of the Staggered Dirac Operator

We have constructed the lowest few eigenvectors of the staggered Dirac operator on SU (3) gauge configurations, both quenched and dynamical. We use these modes to study the topological charge and to construct approximate hadronic correlators.

متن کامل

- th / 9 71 00 02 v 1 1 O ct 1 99 7 NUCLEAR MANY - BODY PROBLEM AT FINITE TEMPERATURE : A TFD APPROACH

Based on the formalism of thermo-field dynamics a new approach for studying collective excitations in hot finite Fermi systems is presented. Two approximations going beyond the thermal RPA namely renormalized thermal RPA and thermal second RPA are formulated.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998