Double Smoothing Technique for Large-Scale Linearly Constrained Convex Optimization
نویسندگان
چکیده
In this paper, we propose an efficient approach for solving a class of large-scale convex optimization problems. The problem we consider is the minimization of a convex function over a simple (possibly infinite-dimensional) convex set, under the additional constraint Au ∈ T , where A is a linear operator and T is a convex set whose dimension is small compared to the dimension of the feasible region. In our approach, we dualize the linear constraints, solve the resulting dual problem with a purely dual gradient-type method and show how to reconstruct an approximate primal solution. Because the linear constraints have been dualized, the dual objective function typically becomes separable, and therefore easy to compute. In order to accelerate our scheme, we introduce a novel double smoothing technique that involves regularization of the dual problem to allow the use of a fast gradient method. As a result, we obtain a method with complexity O( 1 ln 1 ) gradient iterations, where is the desired accuracy for the primal-dual solution. Our approach covers, in particular, optimal control problems with a trajectory governed by a system of linear differential equations, where the additional constraints can, for example, force the trajectory to visit some convex sets at certain moments in time.
منابع مشابه
Estimating the Parameters in Photovoltaic Modules: A Constrained Optimization Approach
This paper presents a novel identification technique for estimation of unknown parameters in photovoltaic (PV) systems. A single diode model is considered for the PV system, which consists of five unknown parameters. Using information of standard test condition (STC), three unknown parameters are written as functions of the other two parameters in a reduced model. An objective function and ...
متن کاملLarge-scale randomized-coordinate descent methods with non-separable linear constraints
We develop randomized block coordinate descent (CD) methods for linearly constrained convex optimization. Unlike other large-scale CD methods, we do not assume the constraints to be separable, but allow them be coupled linearly. To our knowledge, ours is the first CD method that allows linear coupling constraints, without making the global iteration complexity have an exponential dependence on ...
متن کاملA Double Smoothing Technique for Constrained Convex Optimization Problems and Applications to Optimal Control
In this paper, we propose an efficient approach for solving a class of convex optimization problems in Hilbert spaces. Our feasible region is a (possibly infinite-dimensional) simple convex set, i.e. we assume that projections on this set are computationally easy to compute. The problem we consider is the minimization of a convex function over this region under the additional constraint Au ∈ T ...
متن کاملA Primal-Dual Algorithmic Framework for Constrained Convex Minimization
We present a primal-dual algorithmic framework to obtain approximate solutions to a prototypical constrained convex optimization problem, and rigorously characterize how common structural assumptions affect the numerical efficiency. Our main analysis technique provides a fresh perspective on Nesterov’s excessive gap technique in a structured fashion and unifies it with smoothing and primal-dual...
متن کاملCONSTRAINED BIG BANG-BIG CRUNCH ALGORITHM FOR OPTIMAL SOLUTION OF LARGE SCALE RESERVOIR OPERATION PROBLEM
A constrained version of the Big Bang-Big Crunch algorithm for the efficient solution of the optimal reservoir operation problems is proposed in this paper. Big Bang-Big Crunch (BB-BC) algorithm is a new meta-heuristic population-based algorithm that relies on one of the theories of the evolution of universe namely, the Big Bang and Big Crunch theory. An improved formulation of the algorithm na...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM Journal on Optimization
دوره 22 شماره
صفحات -
تاریخ انتشار 2012