Characterization of Plasticizer-Polymer Coatings for the Detection of Benzene in Water Using Sh-Saw Devices
نویسندگان
چکیده
Jude K. Coompson, B.S. Marquette University, 2014 Benzene is a constituent component of crude oil that has been classified as a carcinogen by the EPA with a maximum contamination level (MCL) of 5ppb in drinking water. However, of the aromatic compounds, benzene has one of the lowest polymer-water partition coefficients using commercially available polymers as sensor coatings, resulting in poor limits of detection. This work investigates new coating materials based on polymer/plasticizer mixtures coated onto a shear horizontal surface acoustic wave (SH-SAW) sensor to detect benzene in water. There are many polymers which are unavailable for use as a sensing polymer due to their glassy nature. The use of plasticizers allows the polymer properties to be modified to give a more sensitive polymer by reducing the glass transition temperature, Tg, and increasing the free volume creating a more rubbery polymer which will absorb benzene. Three polymers, polystyrene (PS), poly (ethyl acrylate) and poly (methyl acrylate) were chosen to be plasticized with dioctyl phthalate (DOP). Polystyrene, which also possesses benzene rings, was chosen as its glass transition temperature is 100°C making it glassy. PEA was chosen because it has previously been used as a sensing polymer for benzene and has a Tg of -21°C. PMA was chosen because it has a Tg of 9°C and has previously been shown to have a low sensitivity to benzene. Dioctyl phthalate was chosen as the plasticizer because it possesses a benzene ring and had previously been used as a plasticizer in industry and research for polystyrene and acrylate polymers. The plasticizer-polymer mixtures are spin coated on a lithium tantalate (LiTaO3) SH-SAW dual delay-line device at various thicknesses. Each coating was exposed to multiple concentrations of benzene and frequency shifts were measured. Plasticization led to increased sensitivity for all polymers to benzene.
منابع مشابه
Physicochemical Characterization and Antimicrobial Activity of Nanosilver Containing Hydrogels
Silver ion has been used for centuries to prevent and treat a variety of diseases and infections. In recent years, extensive studies have been undertaken on the use of antimicrobial properties of silver, incorporated within medical devices. The aim of this study was to prepare a formulation containing silver ion, which could be applied for wound dressing. The purity of nanosilver was measured b...
متن کاملPhysicochemical Characterization and Antimicrobial Activity of Nanosilver Containing Hydrogels
Silver ion has been used for centuries to prevent and treat a variety of diseases and infections. In recent years, extensive studies have been undertaken on the use of antimicrobial properties of silver, incorporated within medical devices. The aim of this study was to prepare a formulation containing silver ion, which could be applied for wound dressing. The purity of nanosilver was measured b...
متن کاملPulse mode shear horizontal-surface acoustic wave (SH-SAW) system for liquid based sensing applications.
In this work, we describe a novel pulse mode shear horizontal-surface acoustic wave (SH-SAW) polymer coated biosensor that monitors rapid changes in both amplitude and phase. The SH-SAW sensors were fabricated on 36 degrees rotated Y-cut X propagating lithium tantalate (36 YX.LT). The sensitivity of the device to both mass loading and visco-elastic effects may be increased by using a thin guidi...
متن کاملCharacterization and Evaluation of Novel Film Forming Polymer for Drug Delivery
In this study, Damar Batu (DB) − a novel biomaterial− is evaluated for its potential application in pharmaceutical coating. DB is a whitish to yellowish resin, characterized initially in terms of solubility, acid value, molecular weight (Mw), polydispersity index (Mw/Mn) and glass transition temperature (Tg). Neat plasticized films of DB are investigated for mechanical, water vapor transmission...
متن کاملCharacterization and Evaluation of Novel Film Forming Polymer for Drug Delivery
In this study, Damar Batu (DB) − a novel biomaterial− is evaluated for its potential application in pharmaceutical coating. DB is a whitish to yellowish resin, characterized initially in terms of solubility, acid value, molecular weight (Mw), polydispersity index (Mw/Mn) and glass transition temperature (Tg). Neat plasticized films of DB are investigated for mechanical, water vapor transmission...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016