Semantic Word Clusters Using Signed Spectral Clustering
نویسندگان
چکیده
Vector space representations of words capture many aspects of word similarity, but such methods tend to produce vector spaces in which antonyms (as well as synonyms) are close to each other. For spectral clustering using such word embeddings, words are points in a vector space where synonyms are linked with positive weights, while antonyms are linked with negative weights. We present a new signed spectral normalized graph cut algorithm, signed clustering, that overlays existing thesauri upon distributionally derived vector representations of words, so that antonym relationships between word pairs are represented by negative weights. Our signed clustering algorithm produces clusters of words that simultaneously capture distributional and synonym relations. By using randomized spectral decomposition (Halko et al., 2011) and sparse matrices, our method is both fast and scalable. We validate our clusters using datasets containing human judgments of word pair similarities and show the benefit of using our word clusters for sentiment prediction.
منابع مشابه
Semantic Word Clusters Using Signed Normalized Graph Cuts
Vector space representations of words capture many aspects of word similarity, but such methods tend to make vector spaces in which antonyms (as well as synonyms) are close to each other. We present a new signed spectral normalized graph cut algorithm, signed clustering, that overlays existing thesauri upon distributionally derived vector representations of words, so that antonym relationships ...
متن کاملBilingual Word Spectral Clustering for Statistical Machine Translation
In this paper, a variant of a spectral clustering algorithm is proposed for bilingual word clustering. The proposed algorithm generates the two sets of clusters for both languages efficiently with high semantic correlation within monolingual clusters, and high translation quality across the clusters between two languages. Each cluster level translation is considered as a bilingual concept, whic...
متن کاملWord clustering effect on vocabulary learning of EFL learners: A case of semantic versus phonological clustering
The aim of this study is to determine the effect of word clustering method on vocabulary learning of Iranian EFL learners through a case of semantic versus phonological clustering. To this effect, 80 homogeneous students from four intermediate classes at an English institute in Torbat e Heydariyeh participated in this research. They were assigned to four groups according to semantic versus phon...
متن کاملSeating Assignment Using Constrained Signed Spectral Clustering
In this paper, we present a novel method for constrained cluster size signed spectral clustering (CSS) which allows us to subdivide large groups of people based on their relationships. In general, signed clustering only requires K hard clusters and does not constrain the cluster sizes. We extend signed clustering to include cluster size constraints. Using an example of seating assignment, we ef...
متن کاملClustering multilingual documents by estimating text - to - text semantic relatedness
This thesis is about multilingual document clustering through estimating semantic relatedness between multilingual texts. Specifically we focus on the task of clustering multilingual documents with very limited or no supervisory information. We present two approaches to address the problem : a comparable-corpora based approach and a web-searches based approach. Our first approach derives pairwi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017