Rising CO2 Interacts with Growth Light and Growth Rate to Alter Photosystem II Photoinactivation of the Coastal Diatom Thalassiosira pseudonana
نویسندگان
چکیده
We studied the interactive effects of pCO(2) and growth light on the coastal marine diatom Thalassiosira pseudonana CCMP 1335 growing under ambient and expected end-of-the-century pCO(2) (750 ppmv), and a range of growth light from 30 to 380 µmol photons·m(-2)·s(-1). Elevated pCO(2) significantly stimulated the growth of T. pseudonana under sub-saturating growth light, but not under saturating to super-saturating growth light. Under ambient pCO(2) susceptibility to photoinactivation of photosystem II (σ(i)) increased with increasing growth rate, but cells growing under elevated pCO(2) showed no dependence between growth rate and σ(i), so under high growth light cells under elevated pCO(2) were less susceptible to photoinactivation of photosystem II, and thus incurred a lower running cost to maintain photosystem II function. Growth light altered the contents of RbcL (RUBISCO) and PsaC (PSI) protein subunits, and the ratios among the subunits, but there were only limited effects on these and other protein pools between cells grown under ambient and elevated pCO(2).
منابع مشابه
Photosystem II photoinactivation, repair, and protection in marine centric diatoms.
Diatoms are important contributors to aquatic primary production, and can dominate phytoplankton communities under variable light regimes. We grew two marine diatoms, the small Thalassiosira pseudonana and the large Coscinodiscus radiatus, across a range of temperatures and treated them with a light challenge to understand their exploitation of variable light environments. In the smaller T. pse...
متن کاملDiatom growth responses to photoperiod and light are predictable from diel reductant generation
Light drives phytoplankton productivity, so phytoplankton must exploit variable intensities and durations of light exposure, depending upon season, latitude, and depth. We analyzed the growth, photophysiology and composition of small, Thalassiosira pseudonana, and large, Thalassiosira punctigera, centric diatoms from temperate, coastal marine habitats, responding to a matrix of photoperiods and...
متن کاملDiatom Proteomics Reveals Unique Acclimation Strategies to Mitigate Fe Limitation
Phytoplankton growth rates are limited by the supply of iron (Fe) in approximately one third of the open ocean, with major implications for carbon dioxide sequestration and carbon (C) biogeochemistry. To date, understanding how alteration of Fe supply changes phytoplankton physiology has focused on traditional metrics such as growth rate, elemental composition, and biophysical measurements such...
متن کاملA Hard Day's Night: Diatoms Continue Recycling Photosystem II in the Dark
Marine diatoms are photosynthetic, and thrive in environments where light fluctuates. Like all oxygenic photosynthetic organisms diatoms face a light-dependent inactivation of the Photosystem II complexes that photooxidize water to generate biosynthetic reductant. To maintain photosynthesis this photoinactivation must be countered by slow and metabolically expensive protein turnover, which is l...
متن کاملLocalization and role of manganese superoxide dismutase in a marine diatom.
Superoxide dismutase (SOD) catalyzes the transformation of superoxide to molecular oxygen and hydrogen peroxide. Of the four known SOD isoforms, distinguished by their metal cofactor (iron, manganese [Mn], copper/zinc, nickel), MnSOD is the dominant form in the diatom Thalassiosira pseudonana. We cloned the MnSOD gene, sodA, using the expression vector pBAD, overexpressed the product in Escheri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013