Trivariate Spline Approximation of Divergence-free Vector Fields
نویسندگان
چکیده
We discuss the approximation properties of divergence-free vector fields by using trivariate spline vectors which are also divergence-free. We pay special attention to the approximation constants and show that they depend only on the smallest solid angle in the underlying tetrahedral partition and the nature of the boundary of the domain. The estimates are given in the max-norm and L norm. §
منابع مشابه
Div-free minimizing splines under tension
Vector field approximation is a problem involving the reconstruction of physical fields from a set of scattered observed data. In this paper, we address the problem of interpolation of divergence-free vector fields in three dimensional space by thin plate spline under tension. The problem is formulated as a minimization problem where the cost is related to the equilibrium energy of thin plate w...
متن کاملTrivariate spline approximations of 3D Navier-Stokes equations
We present numerical approximations of the 3D steady state Navier-Stokes equations in velocity-pressure formulation. We use trivariate splines of arbitrary degree d and arbitrary smoothness r < d. Using functional arguments, we derive the discrete Navier-Stokes equations in terms of B-coefficients of trivariate splines over a tetrahedral partition of any given polygonal domain. Smoothness condi...
متن کاملConstruction of trivariate compactly supported biorthogonal box spline wavelets
We give a formula for the duals of the masks associated with trivariate box spline functions. We show how to construct trivariate nonseparable compactly supported biorthogonal wavelets associated with box spline functions. The biorthogonal wavelets may have arbitrarily high regularities.
متن کاملPseudo-polyharmonic div-curl splines and elastic splines
Vector field reconstruction is a problem that arises in many scientific applications. In this paper we study a div-curl approximation of vector fields by pseudo-polyharmonic splines and elastic splines. This leads to the variational smoothing and interpolating spline problems with minimization of an energy involving the rotational and the divergence of the vector field.
متن کاملTrivariate B-spline Approximation of Spherical Solid Objects
Recently, novel application areas in digital geometry processing, such as simulation, dynamics, and medical surgery simulations, have necessitated the representation of not only the surface data but also the interior volume data of a given 3D object. In this paper, we present an efficient framework for the shape approximations of spherical solid objects based on trivariate B-splines. To do this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004