Mutant presenilin 1 expression in excitatory neurons impairs enrichment-mediated phenotypes of adult hippocampal progenitor cells.

نویسندگان

  • Karthikeyan Veeraraghavalu
  • Sangram S Sisodia
چکیده

Inheritance of mutant presenilin 1 genes (PSEN1) encoding presenilin 1 (PS1)variants causes autosomal dominant forms of familial Alzheimer's disease (FAD). We previously reported that ubiquitous expression of FAD-linked PS1 variants in mice impairs environmental enrichment (EE)-induced proliferation and neuronal commitment of adult hippocampal neural progenitor cells (AHNPCs). Notably, the self-renewal and differentiation properties of cultured AHNPCs expressing either human PS1 wild-type or PS1 variants were identical, suggesting that accessory cells within the hippocampal niche expressing PS1 variants may modulate AHNPC phenotypes in vivo. We now report that nontransgenic mouse AHNPCs transduced with retroviruses harboring cDNAs that encode either human PS1 wild-type or FAD-linked PS1 variants show no differences in EE-mediated proliferation and neuronal differentiation. Moreover, conditional inactivation of a mutant PS1 transgene in type-1 primary progenitor cells failed to rescue impairments of EE-induced proliferation, survival, or neurogenesis. In contrast, conditional inactivation of the mutant PS1 transgene in excitatory neurons of the mouse forebrain largely rescued the deficits in EE-induced proliferation and survival of AHNPCs, but not their differentiation into mature neuronal phenotypes. These results persuasively argue for a noncell autonomous effect of FAD-linked PS1 mutants on EE-mediated adult hippocampal neurogenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Cell-Autonomous Effects of Presenilin 1 Variants on Enrichment-Mediated Hippocampal Progenitor Cell Proliferation and Differentiation

Presenilin 1 (PS1) regulates environmental enrichment (EE)-mediated neural progenitor cell (NPC) proliferation and neurogenesis in the adult hippocampus. We now report that transgenic mice that ubiquitously express human PS1 variants linked to early-onset familial Alzheimer's disease (FAD) neither exhibit EE-induced proliferation, nor neuronal lineage commitment of NPCs. Remarkably, the prolife...

متن کامل

Lead exposure impairs the NMDA agonist-induced NOS expression in pyramidal hippocampal cells

Chronic exposure to lead (Pb) affects neural functions in central nervous system (CNS) particularly the learning and memory. On the other hand, alteration of calcium level in the CNS results in activation of NOS. It has been shown that lead enters the neurons through calcium channels and displaces Ca2+ from calcium binding proteins such as calmodulin and troponin C thereby affecting calcium-med...

متن کامل

Lead exposure impairs the NMDA agonist-induced NOS expression in pyramidal hippocampal cells

Chronic exposure to lead (Pb) affects neural functions in central nervous system (CNS) particularly the learning and memory. On the other hand, alteration of calcium level in the CNS results in activation of NOS. It has been shown that lead enters the neurons through calcium channels and displaces Ca2+ from calcium binding proteins such as calmodulin and troponin C thereby affecting calcium-med...

متن کامل

Adult Hippocampal Neurogenesis and Memory

Adult neurogenesis, a concept emergent in the late 1990s, is the generation of new neurons in the adult brain. This process occurs thank to cells who have this proliferative feature, named as Neural Stem Cells (NSCs). Neural Stem Cells (NSCs) are primary progenitors who can generate the two neural types (neurons and glia). Classically it was assumed that NSCs are only present in the embryo, but...

متن کامل

Adult Hippocampal Neurogenesis and Memory

Adult neurogenesis, a concept emergent in the late 1990s, is the generation of new neurons in the adult brain. This process occurs thank to cells who have this proliferative feature, named as Neural Stem Cells (NSCs). Neural Stem Cells (NSCs) are primary progenitors who can generate the two neural types (neurons and glia). Classically it was assumed that NSCs are only present in the embryo, but...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 22  شماره 

صفحات  -

تاریخ انتشار 2013