Asymptotic expansion of the solution of Maxwell’s equations in polygonal plane domains
نویسنده
چکیده
This paper is mainly concerned with the structure of the singular and regular parts of the solution of time-harmonic Maxwell's equations in polygonal plane domains. The asymptotic behaviour of the solution near corner points of the domain is studied by means of discrete Fourier transformation. A detailed functional analysis of the solution shows that the boundary value problem does not belong locally to H 2 when the boundary of the domain has non-acute angles, and explicit formulas for the singularity functions and their corresponding coefficients are given. Développement asymptotique de la solution des équations de Maxwell dans des domaines polygonaux Résumé : Cet article étudie la structure des singularités de la solution des équations de Maxwell harmoniques dans des polygones plans. Le comportement asymptotique de la solution au voisinage des coins est étudié à l'aide de séries de Fourier. Une analyse détaillée du problème aux limites montre que la solution n'est pas localement H 2 lorsque la frontière du domaine présente des angles obtus ou rentrants, On présente des formules explicites pour les fonctions singulières et les coefficients de singularité. Mots-clés : Équations de Maxwell, singularités, méthode de Fourier.
منابع مشابه
Stress Waves in a Generalized Thermo Elastic Polygonal Plate of Inner and Outer Cross Sections
The stress wave propagation in a generalized thermoelastic polygonal plate of inner and outer cross sections is studied using the Fourier expansion collocation method. The wave equation of motion based on two-dimensional theory of elasticity is applied under the plane strain assumption of generalized thermoelastic plate of polygonal shape, composed of homogeneous isotropic material. The freque...
متن کاملClamped-Free Non Homogeneous Magneto Electro Elastic Plate of Polygonal Cross-Sections with Hydrostatic Stress and Gravity
In this article, the influence of hydrostatic stress and gravity on a clamped- free non homogeneous magneto electro elastic plate of polygonal cross sections is studied using linear theory of elasticity. The equations of motion based on two-dimensional theory of elasticity are applied under the plane strain assumption of prestressed and gravitated magneto electro elastic plate of polygonal cros...
متن کاملNumerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type
In this paper, we have proposed a numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided in...
متن کاملNonlinear analytical solution of nearly incompressible hyperelastic cylinder with variable thickness under non-uniform pressure by perturbation technique
In this paper, nonlinear analytical solution of pressurized thick cylindrical shells with variable thickness made of hyperelastic materials is presented. The governing equilibrium equations for the cylindrical shell with variable thickness under non-uniform internal pressure are derived based on first-order shear deformation theory (FSDT). The shell is assumed to be made of isotropic and homoge...
متن کاملSuperconvergence and Extrapolation Analysis of a Nonconforming Mixed Finite Element Approximation for Time-Harmonic Maxwell's Equations
In this paper, a nonconforming mixed finite element approximating to the three-dimensional time-harmonic Maxwell’s equations is presented. On a uniform rectangular prism mesh, superclose property is achieved for electric field E and magnetic field H with the boundary condition E × n = 0 by means of the asymptotic expansion. Applying postprocessing operators, a superconvergence result is stated ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005