Graph-Based Induction of Word Senses in Croatian
نویسندگان
چکیده
Word sense induction (WSI) seeks to induce senses of words from unannotated corpora. In this paper, we address the WSI task for the Croatian language. We adopt the word clustering approach based on co-occurrence graphs, in which senses are taken to correspond to strongly inter-connected components of co-occurring words. We experiment with a number of graph construction techniques and clustering algorithms, and evaluate the sense inventories both as a clustering problem and extrinsically on a word sense disambiguation (WSD) task. In the cluster-based evaluation, Chinese Whispers algorithm outperformed Markov Clustering, yielding a normalized mutual information score of 64.3. In contrast, in WSD evaluation Markov Clustering performed better, yielding an accuracy of about 75%. We are making available two induced sense inventories of 10,000 most frequent Croatian words: one coarse-grained and one fine-grained inventory, both obtained using the Markov Clustering algorithm.
منابع مشابه
Word Sense Induction by Community Detection
Word Sense Induction (WSI) is an unsupervised approach for learning the multiple senses of a word. Graph-based approaches to WSI frequently represent word co-occurrence as a graph and use the statistical properties of the graph to identify the senses. We reinterpret graph-based WSI as community detection, a well studied problem in network science. The relations in the co-occurrence graph give r...
متن کاملUoS: A Graph-Based System for Graded Word Sense Induction
This paper presents UoS, a graph-based Word Sense Induction system which attempts to find all applicable senses of a target word given its context, grading each sense according to its suitability to the context. Senses of a target word are induced through use of a non-parameterised, linear-time clustering algorithm that returns maximal quasi-strongly connected components of a target word graph ...
متن کاملGraph Based Algorithms for Word Sense Induction and Disambiguation
This paper presents a survey of graph based methods for word sense induction and disambiguation. Many areas of Natural Language Processing like Word Sense Disambiguation (WSD), text summarization, keyword extraction make use of Graph based methods. The very idea behind graph based approach is to formulate the problems in graph setting and apply clustering to obtain a set of clusters (senses). T...
متن کاملGraph-based Clustering of Synonym Senses for German Particle Verbs
In this paper, we address the automatic induction of synonym paraphrases for the empirically challenging class of German particle verbs. Similarly to Cocos and Callison-Burch (2016), we incorporate a graph-based clustering approach for word sense discrimination into an existing paraphrase extraction system, (i) to improve the precision of synonym identification and ranking, and (ii) to enlarge ...
متن کاملTwo graph-based algorithms for state-of-the-art WSD
This paper explores the use of two graph algorithms for unsupervised induction and tagging of nominal word senses based on corpora. Our main contribution is the optimization of the free parameters of those algorithms and its evaluation against publicly available gold standards. We present a thorough evaluation comprising supervised and unsupervised modes, and both lexical-sample and all-words t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016