Effective Retrieval Model for Entity with Multi-valued Attributes: BM25MF and Beyond

نویسندگان

  • Stéphane Campinas
  • Renaud Delbru
  • Giovanni Tummarello
چکیده

The task of entity retrieval becomes increasingly prevalent as more and more structured information about entities is available on the Web in various forms such as documents embedding metadata (RDF, RDFa, Microdata, Microformats). International benchmarking campaigns, e.g., the Text REtrieval Conference or the Semantic Search Challenge, propose entity-oriented search tracks. This reflects the need for an effective search and discovery of entities. In this work, we present a multi-valued attributes model for entity retrieval which extends and generalises existing field-based ranking models. Our model introduces the concept of multi-valued attributes and enables attribute and value-specific normalization and weighting. Based on this model we extend two state-of-theart field-based rankings, i.e., BM25F and PL2F, and demonstrate based on evaluations over heterogeneous datasets that this model improves significantly the retrieval performance compared to existing models. Finally, we introduce query dependent and independent weights specifically designed for our model which provide significant performance improvement.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving robot selection problem by a new interval-valued hesitant fuzzy multi-attributes group decision method

‎Selecting the most suitable robot among their wide range of specifications and capabilities is an important issue to perform the hazardous and repetitive jobs‎. ‎Companies should take into consideration powerful group decision-making (GDM) methods to evaluate the candidates or potential robots versus the selected attributes (criteria)‎. ‎In this study‎, ‎a new GDM method is proposed by utilizi...

متن کامل

A New Algorithm for Optimization of Fuzzy Decision Tree in Data Mining

Decision-tree algorithms provide one of the most popular methodologies for symbolic knowledge acquisition. The resulting knowledge, a symbolic decision tree along with a simple inference mechanism, has been praised for comprehensibility. The most comprehensible decision trees have been designed for perfect symbolic data. Classical crisp decision trees (DT) are widely applied to classification t...

متن کامل

Multi-Valued Relationship Attributes in Extended Entity Relationship Model and Their Mapping to Relational Schema

Conceptual modeling is one of the most important phases in designing database applications. The success of this design relies heavily on how clearly the real world requirements are represented in the conceptual model. To date, the Extended Entity Relationship (EER) model extended from the traditional Entity Relationship (ER) model is a widely used modeling technique during the phase of conceptu...

متن کامل

SHAPLEY FUNCTION BASED INTERVAL-VALUED INTUITIONISTIC FUZZY VIKOR TECHNIQUE FOR CORRELATIVE MULTI-CRITERIA DECISION MAKING PROBLEMS

Interval-valued intuitionistic fuzzy set (IVIFS) has developed to cope with the uncertainty of imprecise human thinking. In the present communication, new entropy and similarity measures for IVIFSs based on exponential function are presented and compared with the existing measures. Numerical results reveal that the proposed information measures attain the higher association with the existing me...

متن کامل

Hybrid multi-criteria group decision-making for supplier selection problem with interval-valued Intuitionistic fuzzy data

The main objectives of supply chain management are reducing the risk of supply chain and production cost, increase the income, improve the customer services, optimizing the achievement level, and business processes which would increase ability, competency, customer satisfaction, and profitability. Further, the process of selecting the appropriate supplier capable of providing buyerchr('39')s re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012