TLR4-NOX2 axis regulates the phagocytosis and killing of Mycobacterium tuberculosis by macrophages

نویسندگان

  • Jingzhu Lv
  • Xiaoyan He
  • Hongtao Wang
  • Zhaohua Wang
  • Gabriel T. Kelly
  • Xiaojing Wang
  • Yin Chen
  • Ting Wang
  • Zhongqing Qian
چکیده

BACKGROUND Macrophages stand at the forefront of both innate and adapted immunity through their capacities to recognize, engulf, and eliminate foreign particles, and to stimulate adapted immune cells. They are also involved in controlling pro- and anti-inflammatory pathways. Macrophage activity against Mycobacterium tuberculosis (M. tuberculosis) has been shown to involve Toll-like receptor (TLR) activation and ROS production. Previous studies have shown that lipopolysaccharide (LPS), through TLR4, could activate macrophages, improve their bactericidal ROS production, and facilitate anti-infective immune responses. We sought to better understand the role of the TLR4-NOX2 axis in macrophage activation during M. tuberculosis infection. METHODS THP-1 macrophages and PMA primed THP-1 macrophages [THP-1(A)] were treated with LPS and infected by M. tuberculosis. Cells were analyzed by flow cytometry for TLR4 expression, ROS production, phagocytosis, and killing of M. tuberculosis. Western blotting was used to analyze NOX2 expression. Inhibitors of the TLR4-NOX2 pathway were used to assess this pathway's role in these processes, and their role in LPS activation of macrophages. RESULTS We found that THP1-derived macrophages or PMA primed THP-1 macrophages exhibit higher surface TLR4 levels and increased NOX2 expression levels following LPS treatment. M. tuberculosis infection reduced these levels, but LPS was able to limit the negative effects of M.tb. Additionally, LPS increases THP-1(A) cells' bactericidal activities including phagocytosis, ROS production, and destruction of M. tuberculosis. Significantly, all of these activities are impaired when TLR4 or NOX2 are inhibited. CONCLUSION These studies demonstrate the importance of the TLR4-NOX2 axis in M. tuberculosis elimination by macrophages and may lead to novel therapies for tuberculosis and other bacterial infections.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brucella melitensis and Mycobacterium tuberculosis depict overlapping gene expression patterns induced in infected THP-1 macrophages

Pathogens infecting mammalian cells have developed various strategies to suppress and evade their hosts’ defensive mechanisms. In this line, the intracellular bacteria that are able to survive and propagate within their host cells must have developed strategies to avert their host’s killing attitude. Studying the interface of host-pathogen confrontation can provide valuable information for defi...

متن کامل

Correction for Köster et al., Mycobacterium tuberculosis is protected from NADPH oxidase and LC3-associated phagocytosis by the LCP protein CpsA.

Mycobacterium tuberculosis' success as a pathogen comes from its ability to evade degradation by macrophages. Normally macrophages clear microorganisms that activate pathogen-recognition receptors (PRRs) through a lysosomal-trafficking pathway called "LC3-associated phagocytosis" (LAP). Although Mtuberculosis activates numerous PRRs, for reasons that are poorly understood LAP does not substanti...

متن کامل

NADPH oxidase 2 interaction with TLR2 is required for efficient innate immune responses to mycobacteria via cathelicidin expression.

Gp91(phox)/NADPH oxidase (NOX) 2 is the main catalytic component of NOX, which mediates the phagocytic killing of ingested pathogens via the production of reactive oxygen species (ROS). However, Mycobacterium tuberculosis (Mtb) is relatively resistant to the microbicidal effects of ROS. Thus, the exact roles of NOX2 in the innate immune control against Mtb infection are not fully resolved. In t...

متن کامل

[Induction of direct antimicrobial activity through mammalian toll-like receptors].

Drosophila, the toll gene controls a powerful innate defense system against bacteria and fungi. Conserved through evolution, the mammalian innate immune system retains a family of homologous Toll-like receptors (TLRs) that are activated by microbial ligands to release cytokines that instruct the adaptive immune responses. Here we show that TLR2 activation leads to killing of intracellular Mycob...

متن کامل

Molecular Mechanisms of the Inhibition of Host Cell Apoptosis by Mycobacterium Tuberculosis

Title of Document: MOLECULAR MECHANISMS OF THE INHIBITION OF HOST CELL APOPTOSIS BY MYCOBACTERIUM TUBERCULOSIS. Jessica Lynn Miller, PhD, and 2009 Directed By: Assistant Professor, Volker Briken PhD, Cell Biology and Molecular Genetics The capacity of infected cells to undergo apoptosis upon insult with a pathogen is an ancient innate immune defense mechanism. Consequently, the ability of persi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017