The period functions’ higher order derivatives

نویسنده

  • M. Sabatini
چکیده

We prove a formula for the n-th derivative of the period function T in a period annulus of a planar differential system. For n = 1, we obtain Freire, Gasull and Guillamon formula for the period’s first derivative [17]. We apply such a result to hamiltonian systems with separable variables and other systems. We give some sufficient conditions for the period function of conservative second order O.D.E.’s to be convex.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extension of Higher Order Derivatives of Lyapunov Functions in Stability Analysis of Nonlinear Systems

The Lyapunov stability method is the most popular and applicable stability analysis tool of nonlinear dynamic systems. However, there are some bottlenecks in the Lyapunov method, such as need for negative definiteness of the Lyapunov function derivative in the direction of the system’s solutions. In this paper, we develop a new theorem to dispense the need for negative definite-ness of Lyapunov...

متن کامل

The norm of pre-Schwarzian derivatives on bi-univalent functions of order $alpha$

‎In the present investigation‎, ‎we give the best estimates for the norm of the pre-Schwarzian derivative $ T_{f}(z)=dfrac{f^{''}(z)}{f^{'}(z)} $ for bi-starlike functions and a new subclass of bi-univalent functions of order $ alpha $‎, ‎where‎ ‎$Vert T_{f} Vert= sup_{|z|

متن کامل

An efficient extension of the Chebyshev cardinal functions for differential equations with coordinate derivatives of non-integer order

In this study, an effective numerical method for solving fractional differential equations using Chebyshev cardinal functions is presented. The fractional derivative is described in the Caputo sense. An operational matrix of fractional order integration is derived and is utilized to reduce the fractional differential equations to system of algebraic equations. In addition, illustrative examples...

متن کامل

Partial derivatives of some types of two-variables functions

This paper mainly studies the evaluation of partial derivatives of four types of two-variables functions. We can obtain the infinite series forms of any order partial derivatives of these four types of functions by using differentiation term by term theorem, and hence reducing the difficulty of calculating their higher order partial derivative values greatly. On the other hand, we propose four ...

متن کامل

Application of fractional-order Bernoulli functions for solving fractional Riccati differential equation

In this paper, a new numerical method for solving the fractional Riccati differential  equation is presented. The fractional derivatives are described in the Caputo sense. The method is based upon  fractional-order Bernoulli functions approximations. First, the  fractional-order Bernoulli functions and  their properties are  presented. Then, an operational matrix of fractional order integration...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012