Segmentation of Hemodynamics from Dynamic-Susceptibility-Contrast Magnetic Resonance Brain Images Using Sequential Independent Component Analysis

نویسندگان

  • Yu-Te Wu
  • Hui-Yun Chen
  • Chih-I Hung
  • Yi-Hsuan Kao
  • Wan-Yuo Guo
  • Tzu-Chen Yeh
  • Jen-Chuen Hsieh
چکیده

Dynamic-susceptibility-contrast magnetic resonance imaging, a popular perfusion imaging technique, records signal changes on images caused by the passage of contrast-agent particles in the human brain after a bolus injection of contrast agent. The temporal signal changes on different brain tissues characterize distinct blood supply patterns which are critical for the profound analysis of cerebral hemodynamics. Under the assumption of the spatial independence among these patterns, independent component analysis (ICA) was applied to segment different tissues, i.e., artery, gray matter, white matter, vein and sinus and choroids plexus, so that the spatiotemporal hemodynamics of these tissues were decomposed and analyzed. An arterial input function was modeled using the concentration-time curve of the arterial area for the deconvolution calculation of relative cerebral blood flow. The cerebral hemodynamic parameters, such as relative cerebral blood volume (rCBV), relative cerebral blood flow (rCBF), and relative mean transit time (rMTT), were computed and their averaged ratios between gray matter and white matter were in good agreement with those in the literature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hemodynamic segmentation of MR brain perfusion images using independent component analysis, thresholding, and Bayesian estimation.

Dynamic-susceptibility-contrast MR perfusion imaging is a widely used imaging tool for in vivo study of cerebral blood perfusion. However, visualization of different hemodynamic compartments is less investigated. In this work, independent component analysis, thresholding, and Bayesian estimation were used to concurrently segment different tissues, i.e., artery, gray matter, white matter, vein a...

متن کامل

Automatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI

Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...

متن کامل

Comparison of Two Quantitative Susceptibility Mapping Measurement Methods Used For Anatomical Localization of the Iron-Incorporated Deep Brain Nuclei

Introduction Quantitative susceptibility mapping (QSM) is a new contrast mechanism in magnetic resonance imaging (MRI). The images produced by the QSM enable researchers and clinicians to easily localize specific structures of the brain, such as deep brain nuclei. These nuclei are targets in many clinical applications and therefore their easy localization is a must. In this study, we aimed to i...

متن کامل

Improving Brain Magnetic Resonance Image (MRI) Segmentation via a Novel Algorithm based on Genetic and Regional Growth

Background: Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging.Objective: This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regiona...

متن کامل

Segmentation of Magnetic Resonance Brain Imaging Based on Graph Theory

Introduction: Segmentation of brain images especially from magnetic resonance imaging (MRI) is an essential requirement in medical imaging since the tissues, edges, and boundaries between them are ambiguous and difficult to detect, due to the proximity of the brightness levels of the images. Material and Methods: In this paper, the graph-base...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004