A Survey of Spatial, Temporal and Spatio-temporal Data Mining
نویسندگان
چکیده
Spatio-temporal data sets are often very large and difficult to analyze and display. Since they are fundamental for decision support in many application contexts, recently a lot of interest has arisen toward data-mining techniques to filter out relevant subsets of very large data repositories as well as visualization tools to effectively display the results. In this paper we propose a data-mining system to deal with very large spatio-temporal data sets. With the growth in the size of datasets, data mining has recently become an important research topic and is receiving substantial interest from both academia and industry. This short paper provides a few comments on this research and provides a relevant research papers investigating temporal, spatial and spatio-temporal data mining.
منابع مشابه
Spatio-Temporal Variation of Suspended Sediment Concentration at Downstream of a Sand Mine
The growing population led to greater human need to use natural resources such as sand and gravel mines. Direct removal of sands from the bed river leads to increase suspended sediment concentrations in downstream of harvested area and creates other problems viz. filling reservoirs, change in hydraulic characteristics of the channel and environmental damages. However, the range of temporal and ...
متن کاملSpatio-temporal analysis of the covid-19 impacts on the using Chicago urban shared bicycles by tensor-based approach
Cycling is a phenomenon in urban transportation that has the ability to allocate a specific location at any moment in time. Accordingly, spatial analysis of bicycle trips can be accompanied by temporal analysis. The use of a GIS environment is commonly recommended to display the extent of the phenomenon's spatial changes. However, in order to apply and display changes over time, it will requir...
متن کاملSTCS-GAF: Spatio-Temporal Compressive Sensing in Wireless Sensor Networks- A GAF-Based Approach
Routing and data aggregation are two important techniques for reducing communication cost of wireless sensor networks (WSNs). To minimize communication cost, routing methods can be merged with data aggregation techniques. Compressive sensing (CS) is one of the effective techniques for aggregating network data, which can reduce the cost of communication by reducing the amount of routed data to t...
متن کاملContext-aware Modeling for Spatio-temporal Data Transmitted from a Wireless Body Sensor Network
Context-aware systems must be interoperable and work across different platforms at any time and in any place. Context data collected from wireless body area networks (WBAN) may be heterogeneous and imperfect, which makes their design and implementation difficult. In this research, we introduce a model which takes the dynamic nature of a context-aware system into consideration. This model is con...
متن کاملSpatio-Temporal Data Mining: A Survey of Problems and Methods
Large volumes of spatio-temporal data are increasingly collected and studied in diverse domains including, climate science, social sciences, neuroscience, epidemiology, transportation, mobile health, and Earth sciences. Spatio-temporal data differs from relational data for which computational approaches are developed in the data mining community for multiple decades, in that both spatial and te...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011