Metabotropic regulation of intrinsic excitability by synaptic activation of kainate receptors.
نویسندگان
چکیده
Prolonged modification of intrinsic neuronal excitability is gaining prominence as an activity-dependent form of plasticity. Here we describe a potential synaptic initiation mechanism for these changes in which release of the transmitter glutamate acts on kainate receptors to regulate the postspike slow afterhyperpolarization (sAHP). This action of synaptically released glutamate was occluded by previous kainate application. Furthermore, inhibition of glutamate uptake enhanced the effects of synaptic activation. Glutamate-mediated kainate receptor inhibition of sAHP current (I(sAHP)) was blocked by the PKC inhibitor calphostin C, confirming the requirement for a metabotropic signaling cascade. These data describe a new physiological function for glutamate release: activation of metabotropic kainate receptors, which control directly the excitability of pyramidal cells and probably contribute to prolonged excitability changes.
منابع مشابه
Postsynaptic Kainate Receptor Recycling and Surface Expression Are Regulated by Metabotropic Autoreceptor Signalling
Kainate receptors (KARs) play fundamentally important roles in controlling synaptic function and regulating neuronal excitability. Postsynaptic KARs contribute to excitatory neurotransmission but the molecular mechanisms underlying their activity-dependent surface expression are not well understood. Strong activation of KARs in cultured hippocampal neurons leads to the downregulation of postsyn...
متن کاملIonotropic Glutamate Receptors and their Role in Neurological Diseases
Glutamate is extensively and relatively uniformly distributed in the central nervous system (CNS) and its effects mediated by two distinct groups of receptors including Ionotropic and metabotropic glutamate receptors. Concentration of glutamate in the nervous system is much higher than in other tissues. Glutamate receptors play an important role in synaptic transmission, neural plasticity and n...
متن کاملThe Role of Adrenergic Receptors on Neural Excitability and Synaptic Plasticity: A Narrative Review
Adrenergic receptors have an important role in neural excitability and synaptic plasticity. Despite a lot of studies on these receptors, their exact role in brain disorders accompanied with hyperexcitability has not been determined. There are also controversies on their role in synaptic plasticity. In this review article, the important studies done in this regard have been reviewed to achieve a...
متن کاملEnhanced Intrinsic Excitability in Basket Cells Maintains Excitatory-Inhibitory Balance in Hippocampal Circuits
The dynamics of inhibitory circuits in the cortex is thought to rely mainly on synaptic modifications. We challenge this view by showing that hippocampal parvalbumin-positive basket cells (PV-BCs) of the CA1 region express long-term (>30 min) potentiation of intrinsic neuronal excitability (LTP-IE(PV-BC)) upon brief repetitive stimulation of the Schaffer collaterals. LTP-IE(PV-BC) is induced by...
متن کاملMetabotropic-Mediated Kainate Receptor Regulation of IsAHP and Excitability in Pyramidal Cells
Kainate receptors (KARs) on CA1 pyramidal cells make no detectable contribution to EPSCs. We report that these receptors have a metabotropic function, as shown previously for CA1 interneurons. Brief kainate exposure caused long-lasting inhibition of a postspike potassium current (I(sAHP)) in CA1 pyramidal cells. The pharmacological profile was independent of AMPA receptors or the GluR5 subunit,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 24 19 شماره
صفحات -
تاریخ انتشار 2004