Depletion of FGF acts as a lateral inhibitory factor in lung branching morphogenesis in vitro

نویسندگان

  • Takashi Miura
  • Kohei Shiota
چکیده

Previous studies have shown that the interaction of positive and inhibitory signals plays a crucial role during lung branching morphogenesis. We found that in mesenchyme-free conditions, the lung epithelium exerted a lateral inhibitory effect on the neighbouring epithelium via depletion of fibroblast growth factor 1 (FGF1). Contrary to previous suggestions, bone morphogenetic protein 4 could not substitute for the inhibitory effect. Based on of this observation, we used a reaction-diffusion model of the substrate-depletion type to represent the initial phase of in vitro branching morphogenesis of lung epithelium, with depletion of FGF playing the role of lateral inhibitor. The model was able to account for the effects of the FGF1 concentration, extracellular matrix degradation and different subtypes of FGF on morphogenesis of the lung bud epithelia. These results suggest that the depletion of FGF may be a key regulatory component in initial phase of branching morphogenesis of the lung bud epithelium in vitro.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FGF Signaling Pathway in the Developing Chick Lung: Expression and Inhibition Studies

BACKGROUND Fibroblast growth factors (FGF) are essential key players during embryonic development. Through their specific cognate receptors (FGFR) they activate intracellular cascades, finely regulated by modulators such as Sprouty. Several FGF ligands (FGF1, 2, 7, 9, 10 and 18) signaling through the four known FGFRs, have been implicated in lung morphogenesis. Although much is known about mamm...

متن کامل

Expression of Spred and Sprouty in developing rat lung

Sproutys and Sprouty-related proteins, Spred-1 and -2, are known inhibitors of fibroblast growth factor (FGF) signaling, which plays key role in lung branching morphogenesis and the development of other tissues. The present study demonstrates that Spreds are expressed in a variety of rat embryonic tissues (brain, intestine, heart, skin) including the lung. In the embryonic lung, Spreds and Spro...

متن کامل

Hepatocyte growth factor (HGF) acts as a mesenchyme-derived morphogenic factor during fetal lung development.

Mesenchymal-epithelial tissue interactions are important for development of various organs, and in many cases, soluble signaling molecules may be involved in this interaction. Hepatocyte growth factor (HGF) is a mesenchyme-derived factor which has mitogenic, motogenic and morphogenic activities on various types of epithelial cells and is considered to be a possible mediator of epithelial-mesenc...

متن کامل

Exogenous fibroblast growth factor-10 induces cystic lung development with altered target gene expression in the presence of heparin in cultures of embryonic rat lung.

OBJECTIVES Signaling by fibroblast growth factor (FGF) receptor (FGFR) 2IIIb regulates branching morphogenesis in the mammalian lung. FGFR2IIIb is primarily expressed in epithelial cells, whereas its ligands, FGF-10 and keratinocyte growth factor (KGF; FGF-7), are expressed in mesenchymal cells. FGF-10 null mice lack lungs, whereas KGF null animals have normal lung development, indicating that ...

متن کامل

The Drosophila homologue of SRF acts as a boosting mechanism to sustain FGF-induced terminal branching in the tracheal system.

Recent data have demonstrated a crucial role for the transcription factor SRF (serum response factor) downstream of VEGF and FGF signalling during branching morphogenesis. This is the case for sprouting angiogenesis in vertebrates, axonal branching in mammals and terminal branching of the Drosophila tracheal system. However, the specific functions of SRF in these processes remain unclear. Here,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Mechanisms of Development

دوره 116  شماره 

صفحات  -

تاریخ انتشار 2002