Spectral and angular-selective thermal emission from gallium-doped zinc oxide thin film structures
نویسندگان
چکیده
Simultaneously controlling both the spectral and angular emission of thermal photons can qualitatively change the nature of thermal radiation, and offers a great potential to improve a broad range of applications, including infrared light sources and thermophotovoltaic (TPV) conversion of waste heat to electricity. For TPV in particular, frequency-selective emission is necessary for spectral matching with a photovoltaic converter, while directional emission is needed to maximize the fraction of emission reaching the receiver at large separation distances. This can allow the photovoltaics to be moved outside vacuum encapsulation. In this work, we demonstrate both directionally and spectrally-selective thermal emission for p-polarization, using a combination of an epsilon-near-zero (ENZ) thin film backed by a metal reflector, a high contrast grating, and an omnidirectional mirror. Gallium-doped zinc oxide is selected as an ENZ material, with cross-over frequency in the near-infrared. The proposed structure relies on coupling guided modes (instead of plasmonic modes) to the ENZ thin film using the high contrast grating. The angular width is thus controlled by the choice of grating period. Other off-directional modes are then filtered out using the omnidirectional mirror, thus enhancing frequency selectivity. Our emitter design maintains both a high view factor and high frequency selectivity, leading to a factor of 8.85 enhancement over a typical blackbody emitter, through a combination of a 22.26% increase in view factor and a 6.88x enhancement in frequency selectivity. This calculation assumes a PV converter five widths away from the same width emitter in 2D at 1573 K.
منابع مشابه
Thermophotovoltaics with spectral and angular selective doped-oxide thermal emitters.
Deliberate control of thermal emission properties using nanophotonics has improved a number of applications including thermophotovoltaics (TPV), radiative cooling and infrared spectroscopy. In this work, we study the effect of simultaneous control of angular and spectral properties of thermal emitters on the efficiencies of TPV systems. While spectral selectivity reduces sub-bandgap losses, ang...
متن کاملGa DOPED ZnO THIN FILMS DEPOSITED BY RF MAGNETRON SPUTTERING – PREPARATION AND PROPERTIES
Gallium doped zinc oxide, GZO, thin films have been deposited onto glass substrate by rf magnetron sputtering at various substrate temperatures. The electrical and optical properties of the thin films have been studied as a function of substrate temperature. X-ray diffraction was used in order to investigate thin film structures. The thin film structure was stabilised by heating the samples in ...
متن کاملComparison of composition and atomic structure of amorphous indium gallium zinc oxide thin film transistor before and after positive bias temperature stress by transmission electron microscopy
In this paper high resolution transmission electron microscopy analysis is performed on indium gallium zinc oxide thin film transistors to determine the crystal structure of the material. The relative elemental concentrations of indium, gallium, zinc and oxygen were quantified and analyzed using energy dispersive spectroscopy before and after subjection to positive gate bias temperature stress ...
متن کاملInvestigation on the negative bias illumination stress-induced instability of amorphous indium-tin-zinc-oxide thin film transistors
Articles you may be interested in A thermalization energy analysis of the threshold voltage shift in amorphous indium gallium zinc oxide thin film transistors under simultaneous negative gate bias and illumination Instability of amorphous hafnium-indium-zinc-oxide thin film transistors under negative-bias-illumination stress Appl. Investigation of zinc interstitial ions as the origin of anomalo...
متن کاملEffect of direct current sputtering power on the behavior of amorphous indium-gallium- zinc-oxide thin-film transistors under negative bias illumination stress: A combination of experimental analyses and device simulation
Articles you may be interested in Asymmetrical degradation behaviors in amorphous InGaZnO thin-film transistors under various gate and drain bias stresses Investigation on the negative bias illumination stress-induced instability of amorphous indium-tin-zinc-oxide thin film transistors Appl. Temperature dependence of negative bias under illumination stress and recovery in amorphous indium galli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017