Bootstrap clustering for graph partitioning
نویسندگان
چکیده
Given a simple undirected weighted or unweighted graph, we try to cluster the vertex set into communities and also to quantify the robustness of these clusters. For that task, we propose a new method, called bootstrap clustering which consists in (i) defining a new clustering algorithm for graphs, (ii) building a set of graphs similar to the initial one, (iii) applying the clustering method to each of them, making a profile (set) of partitions, (iv) computing a consensus partition for this profile, which is the final graph partitioning. This allows to evaluate the robustness of a cluster as the average percentage of partitions in the profile joining its element pairs ; this notion can be extended to partitions. Doing so, the initial and consensus partitions can be compared. A simulation protocol, based on random graphs structured in communities is designed to evaluate the efficiency of the Bootstrap Clustering approach.
منابع مشابه
A new algorithm for hybrid hierarchical clustering with visualization and the bootstrap
We propose a hybrid clustering method, Hierarchical Ordered Partitioning And Collapsing Hybrid (HOPACH), which is a hierarchical tree of clusters. The methodology combines the strengths of both partitioning and agglomerative clustering methods. At each node, a cluster is partitioned into two or more smaller clusters with an enforced ordering of the clusters. Collapsing steps uniting the two clo...
متن کاملClustering Microarray Data
Using microarray data, which gives thousands of genes’ expression levels at once, we examine different clustering techniques and evaluation methods to effectively cluster the noisy data. The results of this study has implications for the field of biology. Genes with similar functions are grouped together, which gives insight into specific genes and their role in the cell. The cluster analysis e...
متن کاملAssessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories
In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...
متن کاملSampling from social networks’s graph based on topological properties and bee colony algorithm
In recent years, the sampling problem in massive graphs of social networks has attracted much attention for fast analyzing a small and good sample instead of a huge network. Many algorithms have been proposed for sampling of social network’ graph. The purpose of these algorithms is to create a sample that is approximately similar to the original network’s graph in terms of properties such as de...
متن کاملCentralized Clustering Method To Increase Accuracy In Ontology Matching Systems
Ontology is the main infrastructure of the Semantic Web which provides facilities for integration, searching and sharing of information on the web. Development of ontologies as the basis of semantic web and their heterogeneities have led to the existence of ontology matching. By emerging large-scale ontologies in real domain, the ontology matching systems faced with some problem like memory con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- RAIRO - Operations Research
دوره 45 شماره
صفحات -
تاریخ انتشار 2011