Upregulation of microRNA-181b inhibits CCL18-induced breast cancer cell metastasis and invasion via the NF-κB signaling pathway
نویسندگان
چکیده
The purpose of the present study was to investigate the effects of upregulating microRNA (miR)-181b expression in tumor-associated macrophages regarding breast cancer cell metastasis and to identify the target gene. Ectopic miR-181b was transfected into MDA-MB-231 and MCF-7 breast cancer cell lines with or without chemokine ligand 18 (CCL18) stimulation. Cell proliferation, migration/invasion and apoptosis rate were investigated. The binding effects of miR-181b to the 3'-untranslated region (UTR) of the nuclear factor (NF)-κB gene were detected with the dual luciferase reporter system. Immunofluorescent staining of the NF-κB key component P65 was performed. The messenger (m) RNA and protein expression of NF-κB induced by CCL18 with or without miR-181b stimulation was evaluated with reverse transcription-quantitative polymerase chain reaction and western blot analysis. When compared with the CCL18-stimulated group, miR-181b mimic-transfected cells exhibited significantly inhibited proliferation and migration, with an increased cell apoptosis percentage in a dose-dependent manner. Furthermore, the luciferase activity was reduced for cells with NF-κB 3'-UTR wild-type that were co-transfected with miR-181b mimics. Immunofluorescent staining of NF-κB demonstrably weakened the P65 signal in stimulated miR-181b mimic cells when compared with parental and CCL18-treated cells. The increased expression level of NF-κB induced by CCL18 in MDA-MB-231 and MCF-7 cells was suppressed by miR-181b mimics. Overexpression of miR-181b suppressed cell survival rate and migration. This overexpression may achieve this goal by regulating the NF-κB pathway in breast cancer cells. Our study demonstrated a potential therapeutic application of miR-181b in the treatment of breast cancer.
منابع مشابه
Long non-coding RNA FOXO1 inhibits lung cancer cell growth through down-regulating PI3K/AKT signaling pathway
Objective(s): Lung cancer is one of the most common malignant tumors, which seriously threatens the health and life of the people. Recently, a novel long non-coding RNA (lncRNA) termed lncFOXO1 was found and investigated in breast cancer. However, the effect of lncFOXO1 on lung cancer is still ambiguous. The current study aimed to uncover the functions of lncFOXO1 in l...
متن کاملAnti-proliferative effect and apoptotic induction of sesquiterpene lactone parthenolide in a human breast cancer cell line
Parthenolide is a secondary metabolite, which naturally occurs in the feverfew plant and is responsible for its healing power. The potential of parthenolide in inhibition of cancer cell growth, alone or in combination with other anti-cancer therapeutics, have been studied in several laboratories. In this study, the effect of extracted parthenolide on the expression of seven pro-apoptotic genes,...
متن کاملLFG-500 Inhibits the Invasion of Cancer Cells via Down-Regulation of PI3K/AKT/NF-κB Signaling Pathway
Cancer cell invasion, one of the crucial events in local growth and metastatic spread of tumors, possess a broad spectrum of mechanisms, especially altered expression of matrix metalloproteinases. LFG-500 is a novel synthesized flavonoid with strong anti-cancer activity, whose exact molecular mechanism remains incompletely understood. This current study was designed to examine the effects of LF...
متن کاملDHA blocks TPA-induced cell invasion by inhibiting MMP-9 expression via suppression of the PPAR-γ/NF-κB pathway in MCF-7 cells
Docosahexaenoic acid (DHA) is an omega-3 fatty acid that is considered to have applications in cancer prevention and treatment. The beneficial effects of DHA against cancer metastasis are well established; however, the mechanisms underlying these effects in breast cancer are not clear. Cell invasion is critical for neoplastic metastasis, and involves the degradation of the extracellular matrix ...
متن کاملAqueous extract of Psoralea corylifolia L. inhibits lipopolysaccharide-induced endothelial-mesenchymal transition via downregulation of the NF-κB-SNAIL signaling pathway.
The epithelial-mesenchymal transition (EMT) is a pivotal event in the invasion and metastasis of cancer cells. Psoralea corylifolia L. (PC) inhibits the proliferation of various cancer cells. However, its possible role in EMT has not been identified. In the present study, we examined the effects of an aqueous extract of Psoralea corylifolia L. (PCAE), a typical medicinal decoction, on the EMT. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2016