Periventricular morphology in the diencephalon of antarctic notothenioid teleosts.
نویسندگان
چکیده
We have examined the subependymal region of the diencephalic third ventricle in notothenioid perciforms and report a pattern of neuropil expansions that appears to be phyletically derived for notothenioids and their outgroups but that is otherwise unique among vertebrates. We recognize five types of expansions based on their composition (from less dense neuropil to sacs) and width or protrusion into the third ventricle. In the species with the most elaborate morphology, Trematomus bernacchii, bilateral subependymal expansions fuse along the midline to form a single sac within the ventricular cavity. The extent of these expansions loosely corresponds with phyletic position but also (and perhaps more importantly) is correlated with the habitation of cold water (r2 = 0.48; P = 0.012). Furthermore, subependymal expansion type is positively correlated with the maximum size of the soma of neurons in two hypothalamic nuclei, the preopticus magnocellularis (r2 = 0.54; P = 0.006) and the lateralis tuberis (r2 = 0.40; P = 0.038). These nuclei project to the pituitary and contain cerebrospinal fluid-contacting neurons. In considering the functional consequences of this morphology, we cannot dismiss the possibility that these structures form a specialized enteroceptive system tied to the monitoring of cerebrospinal and extracellular fluid components, including antifreeze glycopeptides and inorganic ions.
منابع مشابه
Divergence in skeletal mass and bone morphology in antarctic notothenioid fishes.
Cover illustration. Notothenioid fishes lack swim bladders, but species live temporarily or permanently in the water column. Without swim bladder, skeletal mass becomes a key determinant of buoyancy. In this issue of the Journal of Morphology, Joseph Eastman and coauthors (pp. 841-861 10.1002/jmor.20258) quantify the degree of skeletal ossification in notothenioid fish and discuss it in phyloge...
متن کاملDiversity and disparity through time in the adaptive radiation of Antarctic notothenioid fishes
According to theory, adaptive radiation is triggered by ecological opportunity that can arise through the colonization of new habitats, the extinction of antagonists or the origin of key innovations. In the course of an adaptive radiation, diversification and morphological evolution are expected to slow down after an initial phase of rapid adaptation to vacant ecological niches, followed by spe...
متن کاملEvolution of the complement system C3 gene in Antarctic teleosts.
Notothenioidei are typical Antarctic teleosts evolved to adapt to the very low temperatures of the Antarctic seas. Aim of the present paper is to investigate sequence and structure of C3, the third component of the complement system of the notothenioid Trematomus bernacchii and Chionodraco hamatus. We determined the complete nucleotide sequence of two C3 isoforms of T. bernacchii and a single C...
متن کاملBrain and sense organ anatomy and histology of the Falkland Islands mullet, Eleginops maclovinus (Eleginopidae), the sister group of the Antarctic notothenioid fishes (Perciformes: Notothenioidei).
The perciform notothenioid fish Eleginops maclovinus, representing the monotypic family Eleginopidae, has a non-Antarctic distribution in the Falkland Islands and southern South America. It is the sister group of the five families and 103 species of Antarctic notothenioids that dominate the cold shelf waters of Antarctica. Eleginops is the ideal subject for documenting the ancestral morphology ...
متن کاملTranscriptomic and genomic evolution under constant cold in Antarctic notothenioid fish.
The antifreeze glycoprotein-fortified Antarctic notothenioid fishes comprise the predominant fish suborder in the isolated frigid Southern Ocean. Their ecological success undoubtedly entailed evolutionary acquisition of a full suite of cold-stable functions besides antifreeze protection. Prior studies of adaptive changes in these teleost fishes generally examined a single genotype or phenotype....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of comparative neurology
دوره 361 1 شماره
صفحات -
تاریخ انتشار 1995