Electronic reconstruction in correlated electron heterostructures
نویسندگان
چکیده
Electronic phase behavior in correlated-electron systems is a fundamental problem of condensed matter physics. We argue here that the change in the phase behavior near the surface and interface, i.e., electronic reconstruction, is the fundamental issue of the correlated-electron surface or interface science. Beyond its importance to basic science, understanding of this behavior is crucial for potential devices exploiting the novel properties of the correlated systems. We present a general overview of the field, and then illustrate the general concepts by theoretical studies of the model heterostructures comprised of a Mott-insulator and a band-insulator, which show that spin (and orbital) orderings in thin heterostructures are generically different from the bulk and that the interface region, about three-unit-cell wide, is always metallic, demonstrating that electronic reconstruction generally occurs. Predictions for photoemission experiments are made to show how the electronic properties change as a function of position, and the magnetic phase diagram is determined as a function of temperature, number of layers, and interaction strength. Future directions for research are also discussed.
منابع مشابه
J ul 2 00 5 Electronic reconstruction in correlated electron heterostructures
Electronic phase behavior in correlated-electron systems is a fundamental problem of condensed matter physics. We argue here that the change in the phase behavior near the surface and interface, i.e., electronic reconstruction, is the fundamental issue of the correlated-electron surface or interface science. Beyond its importance to basic science, understanding of this behavior is crucial for p...
متن کاملMapping electronic reconstruction at the metal-insulator interface in LaVO3/SrVO3 heterostructures
A (LaVO3)6/(SrVO3)3 superlattice is studied with a combination of sub-Å resolved scanning transmission electron microscopy and monochromated electron energy-loss spectroscopy. The V oxidation state is mapped with atomic spatial resolution enabling us to investigate electronic reconstruction at the LaVO3/SrVO3 interfaces. Surprisingly, asymmetric charge distribution is found at adjacent chemical...
متن کاملTunneling electroresistance induced by interfacial phase transitions in ultrathin oxide heterostructures.
The ferroelectric (FE) control of electronic transport is one of the emerging technologies in oxide heterostructures. Many previous studies in FE tunnel junctions (FTJs) exploited solely the differences in the electrostatic potential across the FTJs that are induced by changes in the FE polarization direction. Here, we show that in practice the junction current ratios between the two polarizati...
متن کاملThe size-quantized oscillations of the optical-phonon-limited electron mobility in AlN/GaN/AlN nanoscale heterostructures
We have studied the electron mobility in the AlN/GaN/AlN heterostructures with the nanometer scale thickness by taking into account multiple quantized electron subbands and the confined optical phonon dispersion. It was shown that the inter-subband electronic transitions play an important role in limiting the electron mobility in the heterostructures when the energy separation between one of th...
متن کاملSize-quantized oscillations of the electron mobility limited by the optical and confined acoustic phonons in the nanoscale heterostructures
The authors theoretically investigated the electron mobility in the nanometer thickness AlN/GaN/AlN heterostructures limited by the polar optical and confined acoustic phonons. The proposed model accurately takes into account dispersion of the optical and acoustic phonons in such heterostructures as well as inelasticity of the electron scattering on both optical and acoustic phonons. It has bee...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005