A Bio-inspired Collision Avoidance Model Based on Spatial Information Derived from Motion Detectors Leads to Common Routes
نویسندگان
چکیده
Avoiding collisions is one of the most basic needs of any mobile agent, both biological and technical, when searching around or aiming toward a goal. We propose a model of collision avoidance inspired by behavioral experiments on insects and by properties of optic flow on a spherical eye experienced during translation, and test the interaction of this model with goal-driven behavior. Insects, such as flies and bees, actively separate the rotational and translational optic flow components via behavior, i.e. by employing a saccadic strategy of flight and gaze control. Optic flow experienced during translation, i.e. during intersaccadic phases, contains information on the depth-structure of the environment, but this information is entangled with that on self-motion. Here, we propose a simple model to extract the depth structure from translational optic flow by using local properties of a spherical eye. On this basis, a motion direction of the agent is computed that ensures collision avoidance. Flying insects are thought to measure optic flow by correlation-type elementary motion detectors. Their responses depend, in addition to velocity, on the texture and contrast of objects and, thus, do not measure the velocity of objects veridically. Therefore, we initially used geometrically determined optic flow as input to a collision avoidance algorithm to show that depth information inferred from optic flow is sufficient to account for collision avoidance under closed-loop conditions. Then, the collision avoidance algorithm was tested with bio-inspired correlation-type elementary motion detectors in its input. Even then, the algorithm led successfully to collision avoidance and, in addition, replicated the characteristics of collision avoidance behavior of insects. Finally, the collision avoidance algorithm was combined with a goal direction and tested in cluttered environments. The simulated agent then showed goal-directed behavior reminiscent of components of the navigation behavior of insects.
منابع مشابه
Depth information in natural environments derived from optic flow by insect motion detection system: a model analysis
Knowing the depth structure of the environment is crucial for moving animals in many behavioral contexts, such as collision avoidance, targeting objects, or spatial navigation. An important source of depth information is motion parallax. This powerful cue is generated on the eyes during translatory self-motion with the retinal images of nearby objects moving faster than those of distant ones. T...
متن کاملA Bio-Inspired Model for Visual Collision Avoidance on a Hexapod Walking Robot
While navigating their environments it is essential for autonomous mobile robots to actively avoid collisions with obstacles. Flying insects perform this behavioural task with ease relying mainly on information the visual system provides. Here we implement a bioinspired collision avoidance algorithm based on the extraction of nearness information from visual motion on the hexapod walking robot ...
متن کاملA Bio-inspired Obstacle Avoidance System Concept for Visually Impaired People
A device that could assist a blind or a visually impaired human and also replace the traditional tools like white canes or guiding dogs can be really challenging. An important condition for a person to move freely in an enviroment is to be able to detect any obstacle which may interfere with the trajectory of motion in order to avoid a possible collision with that obstacle. This article present...
متن کاملA fault tolerance routing protocol considering defined reliability and energy consumption in wireless sensor networks
In wireless sensor networks, optimal consumptionof energy and having maximum life time are important factors. In this article attempt has been made to send the data packets with particular reliability from the beginning based on AODV protocol. In this way two new fields add to the routing packets and during routing and discovering of new routes, the lowest remained energy of nodes and route tra...
متن کاملGoal-Directed Navigation of an Autonomous Flying Robot Using Biologically Inspired Cheap Vision
In nature, flying insects are capable of surprisingly good navigation, despite the small size and relative simplicity of their brains. Recent experimental research in biology has uncovered a number of different ways in which insects use cues derived from optical flow for navigational purposes, such as obstacle avoidance, safe landing and dead-reckoning. Inspired by the visual navigation of flyi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2015