A note on mean testing for high dimensional multivariate data under non-normality
نویسندگان
چکیده
A test statistic is considered for testing a hypothesis for the mean vector for multivariate data, when the dimension of the vector, p, may exceed the number of vectors, n, and the underlying distribution need not necessarily be normal. With n, p → ∞, and under mild assumptions, but without assuming any relationship between n and p, the statistic is shown to asymptotically follow a chi-square distribution. A by product of the paper is the approximate distribution of a quadratic form, based on the reformulation of the well-known Box’s approximation, under highdimensional set up. Using a classical limit theorem, the approximation is further extended to an asymptotic normal limit under the same high dimensional set up. The simulation results, generated under different parameter settings, are used to show the accuracy of the approximation for moderate n and large p. Keyword: Non-normality; High dimensionality; Box’s approximation
منابع مشابه
Inferences on the Generalized Variance under Normality
Generalized variance is applied for determination of dispersion in a multivariate population and is a successful measure for concentration of multivariate data. In this article, we consider constructing confidence interval and testing the hypotheses about generalized variance in a multivariate normal distribution and give a computational approach. Simulation studies are performed to compare thi...
متن کاملTesting block-diagonal covariance structure for high-dimensional data under non-normality
In this article, we propose a test for making an inference about the blockdiagonal covariance structure of a covariance matrix in non-normal highdimensional data. We prove that the limiting null distribution of the proposed test is normal under mild conditions when its dimension is substantially larger than its sample size. We further study the local power of the proposed test. Finally, we stud...
متن کاملTesting for additivity and joint effects in multivariate nonparametric regression using Fourier and wavelet methods
We consider the problem of testing for additivity and joint effects in multivariate nonparametric regression when the data are modelled as observations of an unknown response function observed on a d-dimensional (d ≥ 2) lattice and contaminated with additive Gaussian noise. We propose tests for additivity and joint effects, appropriate for both homogeneous and inhomogeneous response functions, ...
متن کاملSimultaneous Monitoring of Multivariate Process Mean and Variability in the Presence of Measurement Error with Linearly Increasing Variance under Additive Covariate Model (RESEARCH NOTE)
In recent years, some researches have been done on simultaneous monitoring of multivariate process mean vector and covariance matrix. However, the effect of measurement error, which exists in many practical applications, on the performance of these control charts is not well studied. In this paper, the effect of measurement error with linearly increasing variance on the performance of ELR contr...
متن کاملTest for assessing multivariate normality which is available for high-dimensional data
We proposed a test for assessing multivariate normality of the high-dimensional data which the dimension is larger than the sample size. The classical tests based on the sample measures of multivariate skewness and kurtosis defined by Mardia (1970) or Srivastava (1984) do not work for the high-dimensional case. The proposed test does not require explicit conditions on the relationship between t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013