Stochastic Bounds for Lévy Processes

نویسنده

  • R. A. DONEY
چکیده

Using the Wiener–Hopf factorization, it is shown that it is possible to bound the path of an arbitrary Lévy process above and below by the paths of two random walks. These walks have the same step distribution, but different random starting points. In principle, this allows one to deduce Lévy process versions of many known results about the large-time behavior of random walks. This is illustrated by establishing a comprehensive theorem about Lévy processes which converge to ∞ in probability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Risk Bounds for Levy Processes in the PAC-Learning Framework

Lévy processes play an important role in the stochastic process theory. However, since samples are non-i.i.d., statistical learning results based on the i.i.d. scenarios cannot be utilized to study the risk bounds for Lévy processes. In this paper, we present risk bounds for non-i.i.d. samples drawn from Lévy processes in the PAC-learning framework. In particular, by using a concentration inequ...

متن کامل

Risk bounds of learning processes for Lévy processes

Lévy processes refer to a class of stochastic processes, for example, Poisson processes and Brownian motions, and play an important role in stochastic processes and machine learning. Therefore, it is essential to study risk bounds of the learning process for time-dependent samples drawn from a Lévy process (or briefly called learning process for Lévy process). It is noteworthy that samples in t...

متن کامل

Nonparametric adaptive estimation for discretely observed Lévy processes

This thesis deals with nonparametric estimation methods for discretely observed Lévy processes. The following statistical framework is considered: A Lévy process X having finite variation on compact sets and finite second moments is observed at low frequency. In this situation, the jump dynamics is fully described by the finite signed measure μ(dx) = xν(dy). The goal is to estimate, nonparametr...

متن کامل

Convex ordering criteria for Lévy processes

Modelling financial and insurance time series with Lévy processes or with exponential Lévy processes is a relevant actual practice and an active area of research. It allows qualitatively and quantitatively good adaptation to the empirical statistical properties of asset returns. Due to model incompleteness it is a problem of considerable interest to determine the dependence of option prices in ...

متن کامل

Nonlinear stochastic integrals for hyperfinite Lévy processes

We develop a notion of nonlinear stochastic integrals for hyperfinite Lévy processes, and use it to find exact formulas for expressions which are intuitively of the form Pt s=0 φ(ω, dls, s) and Qt s=0 ψ(ω, dls, s), where l is a Lévy process. These formulas are then applied to geometric Lévy processes, infinitesimal transformations of hyperfinite Lévy processes, and to minimal martingale measure...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004