Fe-N2/CO complexes that model a possible role for the interstitial C atom of FeMo-cofactor (FeMoco).

نویسندگان

  • Jonathan Rittle
  • Jonas C Peters
چکیده

We report here a series of four- and five-coordinate Fe model complexes that feature an axial tri(silyl)methyl ligand positioned trans to a substrate-binding site. This arrangement is used to crudely model a single-belt Fe site of the FeMo-cofactor that might bind N2 at a position trans to the interstitial C atom. Reduction of a trigonal pyramidal Fe(I) complex leads to uptake of N2 and subsequent functionalization furnishes an open-shell Fe-diazenido complex. A related series of five-coordinate Fe-CO complexes stable across three redox states is also described. Spectroscopic, crystallographic, and Density Functional Theory (DFT) studies of these complexes suggest that a decrease in the covalency of the Fe-C(alkyl) interaction occurs upon reduction and substrate binding. This leads to unusually long Fe-C(alkyl) bond distances that reflect an ionic Fe-C bond. The data presented are contextualized in support of a hypothesis wherein modulation of a belt Fe-C interaction in the FeMo-cofactor facilitates substrate binding and reduction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Chemical Evolution of a Nitrogenase Model, XXIII. The Nature of the Active Site and the Role of Homocitric Acid in MoFe-Nitrogenase

The iron-molybdenum cofactor (FeMo-co) of bacterial nitrogenase is a heterometallic cluster of composition MoFe7S9 that is attached to the apoprotein by a coordinative Mo-N bond to the imidazole group of hisa442, and by a Fe-S bond to cysa.215. The molybdenum atom of FeMo-co in the enzyme in addition is coordinated to one molecule of homocitrate (he), which is required for maximal N2 reducing a...

متن کامل

Extended X-ray absorption fine structure and nuclear resonance vibrational spectroscopy reveal that NifB-co, a FeMo-co precursor, comprises a 6Fe core with an interstitial light atom.

NifB-co, an Fe-S cluster produced by the enzyme NifB, is an intermediate on the biosynthetic pathway to the iron molybdenum cofactor (FeMo-co) of nitrogenase. We have used Fe K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy together with (57)Fe nuclear resonance vibrational spectroscopy (NRVS) to probe the structure of NifB-co while bound to the NifX protein from Azotobacter...

متن کامل

A 10‐Fold Enhancement in N2‐Binding Affinity of an Fe2(μ-H)2 Core upon Reduction to a Mixed-Valence FeFe State

Transient hydride ligands bridging two or more iron centers purportedly accumulate on the iron−molybdenum cofactor (FeMoco) of nitrogenase, and their role in the reduction of N2 to NH3 is unknown. One role of these ligands may be to facilitate N2 coordination at an iron site of FeMoco. Herein, we consider this hypothesis and describe the preparation of a series of diiron complexes supported by ...

متن کامل

FeMo cofactor maturation on NifEN.

FeMo cofactor (FeMoco) biosynthesis is one of the most complicated processes in metalloprotein biochemistry. Here we show that Mo and homocitrate are incorporated into the Fe/S core of the FeMoco precursor while it is bound to NifEN and that the resulting fully complemented, FeMoco-like cluster is transformed into a mature FeMoco upon transfer from NifEN to MoFe protein through direct protein-p...

متن کامل

A 106-Fold Enhancement in N2-Binding Affinity of an Fe2(μ-H)2 Core upon Reduction to a Mixed-Valence FeIIFeI State

Transient hydride ligands bridging two or more iron centers purportedly accumulate on the iron-molybdenum cofactor (FeMoco) of nitrogenase, and their role in the reduction of N2 to NH3 is unknown. One role of these ligands may be to facilitate N2 coordination at an iron site of FeMoco. Herein, we consider this hypothesis and describe the preparation of a series of diiron complexes supported by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 40  شماره 

صفحات  -

تاریخ انتشار 2013