Faster Conflict Generation for Dynamic Controllability

نویسندگان

  • Nikhil Bhargava
  • Tiago Stegun Vaquero
  • Brian C. Williams
چکیده

In this paper, we focus on speeding up the temporal plan relaxation problem for dynamically controllable systems. We take a look at the current bestknown algorithm for determining dynamic controllability and augment it to efficiently generate conflicts when the network is deemed uncontrollable. Our work preserves the O(n) runtime of the best available dynamic controllability checker and improves on the previous best runtime of O(n) for extracting dynamic controllability conflicts. We then turn our attention to temporal plan relaxation tasks and show how we can leverage our work on conflicts and the structure of the network to efficiently make incremental updates intended to restore dynamic controllability by relaxing constraints. Our new algorithm, RELAXIDC, has the same asymptotic runtime as previous algorithms but sees dramatic empirical improvements over the course of repeated dynamic controllability checks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimising Bounds in Simple Temporal Networks with Uncertainty under Dynamic Controllability Constraints

Dynamically controllable simple temporal networks with uncertainty (STNU) are widely used to represent temporal plans or schedules with uncertainty and execution flexibility. While the problem of testing an STNU for dynamic controllability is well studied, many use cases – for example, problem relaxation or schedule robustness analysis – require optimising a function over STNU time bounds subje...

متن کامل

Resolving Uncontrollable Conditional Temporal Problems Using Continuous Relaxations

Uncertainty is commonly encountered in temporal scheduling and planning problems, and can often lead to over-constrained situations. Previous relaxation algorithms for over-constrained temporal problems only work with requirement constraints, whose outcomes can be controlled by the agents. When applied to uncontrollable durations, these algorithms may only satisfy a subset of the random outcome...

متن کامل

A Faster Algorithm for Checking the Dynamic Controllability of Simple Temporal Networks with Uncertainty

A Simple Temporal Network (STN) is a structure containing time-points and temporal constraints that an agent can use to manage its activities. A Simple Temporal Network with Uncertainty (STNU) augments an STN to include contingent links that can be used to represent actions with uncertain durations. The most important property of an STNU is whether it is dynamically controllable (DC)—that is, w...

متن کامل

A New Robust Control Design Based on Feedback Compensator for Sssc

In this paper, the modified linearized Phillips-Heffron model is utilized to theoretically analyze asingle-machine infinite-bus (SMIB) installed with SSSC. Then, the results of this analysis are used forassessing the potential of an SSSC supplementary controller to improve the dynamic stability of apower system. This is carried out by measuring the electromechanical controllability through sing...

متن کامل

Stochastic Controllability of Systems with Multiple Delays in Control

Finite-dimensional stationary dynamic control systems described by linear stochastic ordinary differential state equations with multiple point delays in control are considered. Using the notation, theorems and methods used for deterministic controllability problems for linear dynamic systems with delays in control as well as necessary and sufficient conditions for various kinds of stochastic re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017