Pseudosymmetric and Weyl-pseudosymmetric (κ, Μ)-contact Metric Manifolds
نویسندگان
چکیده
In this paper we classify pseudosymmetric and Ricci-pseudosymmetric (κ, μ)-contact metric manifolds in the sense of Deszcz. Next we characterize Weyl-pseudosymmetric (κ, μ)-contact metric manifolds.
منابع مشابه
On 3-dimensional generalized (κ, μ)-contact metric manifolds
In the present study, we considered 3-dimensional generalized (κ, μ)-contact metric manifolds. We proved that a 3-dimensional generalized (κ, μ)-contact metric manifold is not locally φ-symmetric in the sense of Takahashi. However such a manifold is locally φ-symmetric provided that κ and μ are constants. Also it is shown that if a 3-dimensional generalized (κ, μ) -contact metric manifold is Ri...
متن کاملOn Compact Holomorphically Pseudosymmetric Kählerian Manifolds
For compact Kählerian manifolds, the holomorphic pseudosymmetry reduces to the local symmetry if additionally the scalar curvature is constant and the structure function is non-negative. Similarly, the holomorphic Ricci-pseudosymmetry reduces to the Ricci-symmetry under these additional assumptions. We construct examples of non-compact essentially holomorphically pseudosymmetric Kählerian manif...
متن کاملOn Contact Metric R-Harmonic Manifolds
In this paper we consider contact metric R-harmonic manifolds M with ξ belonging to (κ, μ)-nullity distribution. In this context we have κ ≤ 1. If κ < 1, then M is either locally isometric to the product E × S(4), or locally isometric to E(2) (the group of the rigid motions of the Euclidean 2-space). If κ = 1, then M is an Einstein-Sasakian manifold. Mathematics Subject Classification: 53C05, 5...
متن کاملGeometry and Topology of Manifolds
s 19 ALEKSEEVSKY, Dmitri , Geometry of quaternionic and para-quaternionic CR manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 BELKO, Ivan, The fundamental form on a Lie groupoid of diffeomorphisms 20 BOGDANOVICH, Sergey A., ERMOLITSKI, Alexander A., Hypercomplex structures on tangent bundles . . . . . . . . . . . . . . . . . . . . 22 DESZCZ, Ryszard, On Roter type mani...
متن کاملA Quotient of the Braid Group Related to Pseudosymmetric Braided Categories *
Motivated by the recently introduced concept of a pseudosymmetric braided monoidal category, we define the pseudosymmetric group PSn, as the quotient of the braid group Bn by the relations σiσ −1 i+1 σi = σi+1σ −1 i σi+1, with 1 ≤ i ≤ n − 2. It turns out that PSn is isomorphic to the quotient of Bn by the commutator subgroup [Pn, Pn] of the pure braid group Pn (which amounts to saying that [Pn,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016