Sensory processing and corollary discharge effects in posterior caudal lobe Purkinje cells in a weakly electric mormyrid fish.
نویسندگان
چکیده
Although it has been suggested that the cerebellum functions to predict the sensory consequences of motor commands, how such predictions are implemented in cerebellar circuitry remains largely unknown. A detailed and relatively complete account of predictive mechanisms has emerged from studies of cerebellum-like sensory structures in fish, suggesting that comparisons of the cerebellum and cerebellum-like structures may be useful. Here we characterize electrophysiological response properties of Purkinje cells in a region of the cerebellum proper of weakly electric mormyrid fish, the posterior caudal lobe (LCp), which receives the same mossy fiber inputs and projects to the same target structures as the electrosensory lobe (ELL), a well-studied cerebellum-like structure. We describe patterns of simple spike and climbing fiber activation in LCp Purkinje cells in response to motor corollary discharge, electrosensory, and proprioceptive inputs and provide evidence for two functionally distinct Purkinje cell subtypes within LCp. Protocols that induce rapid associative plasticity in ELL fail to induce plasticity in LCp, suggesting differences in the adaptive functions of the two structures. Similarities and differences between LCp and ELL are discussed in light of these results.
منابع مشابه
Sensory processing and corollary discharge effects in posterior caudal lobe Purkinje cells in 1 a weakly electric mormyrid fish
23 Though it has been suggested that the cerebellum functions to predict the sensory 24 consequences of motor commands, how such predictions are implemented in cerebellar circuitry 25 remains largely unknown. A detailed and relatively complete account of predictive mechanisms 26 has emerged from studies of cerebellum-like sensory structures in fish, suggesting that 27 comparisons of the cerebel...
متن کاملThe mormyromast region of the mormyrid electrosensory lobe. I. Responses to corollary discharge and electrosensory stimuli.
This is the first of two papers on the electrosensory lobe (ELL) of mormyrid electric fish. The ELL is the first stage in the central processing of electrosensory information from electroreceptors. Cells of the mormyrid ELL are affected at the time of the electric organ discharge (EOD) by two different inputs, EOD-evoked reafferent input from electroreceptors and corollary discharge input assoc...
متن کاملPhysiology and plasticity of morphologically identified cells in the mormyrid electrosensory lobe.
The electrosensory lobe (ELL) of mormyrid electric fish is the first stage in the central processing of sensory input from electroreceptors. The responses of cells in ELL to electrosensory input are strongly affected by corollary discharge signals associated with the motor command that drives the electric organ discharge (EOD). This study used intracellular recording and staining to describe th...
متن کاملPhysiology of morphologically identified cells in the posterior caudal lobe of the mormyrid cerebellum.
The cerebellum of the mormyrid fish consists of three major divisions: the valvula, the central lobes, and the caudal lobes. Several studies have focused on the central lobes and the valvula, but little is known about the caudal lobes. The mormyrid caudal lobe includes anterior and posterior components. The anterior caudal lobe is associated with the lateral line and eighth nerve end organs, wh...
متن کاملPlastic Corollary Discharge Predicts Sensory Consequences of Movements in a Cerebellum-Like Circuit
The capacity to predict the sensory consequences of movements is critical for sensory, motor, and cognitive function. Though it is hypothesized that internal signals related to motor commands, known as corollary discharge, serve to generate such predictions, this process remains poorly understood at the neural circuit level. Here we demonstrate that neurons in the electrosensory lobe (ELL) of w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 112 2 شماره
صفحات -
تاریخ انتشار 2014