Symbolic regression of crop pest forecasting using genetic programming
نویسندگان
چکیده
In this paper, we propose and evaluate a mathematical model that describes the reported data on crop pests to get an accurate prediction of production costs, food safety, and the protection of the environment. Meteorological factors are not the only things that affect a bumper harvest; it is also affected by crop plant diseases and insect pests. Studies show that relying solely on the naked-eye observations of experts to forecast well-planned agriculture is not always sufficient to achieve effective control. Providing fast, automatic, cheap, and accurate artificial intelligence-based solutions for that task can be of great realistic significance. The proposed approach is genetic programming (GP)-based and is explicitly directed at solving the symbolic regression of crop pest forecasting. The GP approach is used to create a fitted crop pest model. Our experimental results indicate that the GP model can significantly support an accurate and automatic building of a reliable mathematical model. Furthermore, a comparison between the GP model and a linear regression model is also provided. The developed GP model can successfully achieve a precision of approximately 0.0557.
منابع مشابه
Monthly rainfall Forecasting using genetic programming and support vector machine
Rainfall and runoff estimation play a fundamental and effective role in the management and proper operation of the watershed, dams and reservoirs management, minimizing the damage caused by floods and droughts, and water resources management. The optimal performance of intelligent models has increased their use to predict various hydrological phenomena. Therefore, in this study, two intelligent...
متن کاملLong Term Energy Consumption Forecasting Using Genetic Programming
Managing electrical energy supply is a complex task. The most important part of electric utility resource planning is forecasting of the future load demand in the regional or national service area. This is usually achieved by constructing models on relative information, such as climate and previous load demand data. In this paper, a genetic programming approach is proposed to forecast long term...
متن کاملForecasting Stock Returns Using Genetic Programming in C++
This is an investigation of forecasting stock returns using genetic programming. We first test the hypothesis that genetic programming is equally successful in predicting series produced by data generating processes of different structural complexity. After rejecting the hypothesis, we measure the complexity, of thirty-two time series representing four different frequencies of eight stock retur...
متن کاملRegression-based Daugava River Flood Forecasting and Monitoring
The paper discusses the application of linear and symbolic regression to forecast and monitor river floods. Main tasks of the research are to find an analytical model of river flow and to forecast it. The challenges are a small set of flow measurements and a small number of input factors. Genetic programming is used in the task of symbolic regression. To train the model, historical data of the ...
متن کاملShuffled Frog-Leaping Programming for Solving Regression Problems
There are various automatic programming models inspired by evolutionary computation techniques. Due to the importance of devising an automatic mechanism to explore the complicated search space of mathematical problems where numerical methods fails, evolutionary computations are widely studied and applied to solve real world problems. One of the famous algorithm in optimization problem is shuffl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012