Aluminum Nanoparticles with Hot Spots for Plasmon- Induced Circular Dichroism of Chiral Molecules in the UV Spectral Interval
نویسندگان
چکیده
Plasmonic nanocrystals with hot spots are able to localize optical energy in small spaces. In such physical systems, near-field interactions between molecules and plasmons can become especially strong. This paper considers the case of a nanoparticle dimer and a chiral biomolecule. In our model, a chiral molecule is placed in the gap between two plasmonic nanoparticles, where the electromagnetic hot spot occurs. Since many important biomolecules have optical transitions in the UV, we consider the case of Aluminum nanoparticles, as they offer strong electromagnetic enhancements in the blue and UV spectral intervals. Our calculations show that the complex composed of a chiral molecule and an Al-dimer exhibits strong CD signals in the plasmonic spectral region. In contrast to the standard Au-and Ag-nanocrystals, the Al system may have a much better spectral overlap between the typical biomolecule's optical transitions and the nanocrystals' plasmonic band. Overall, we found that Al nanocrystals used as CD antennas exhibit unique properties as compared to other commonly studied plasmonic and dielectric materials. The plasmonic systems investigated in this study can be potentially used for sensing chirality of biomolecules, which is of interest in applications such as drug development.
منابع مشابه
Plasmon-induced CD response of oligonucleotide-conjugated metal nanoparticles.
Non-chiral metal nanoparticles conjugated with chiral oligonucleotide molecules demonstrated a circular dichroism (CD) at the plasmonic wavelengths due to aggregation effects.
متن کاملCoupled plasmons induce broadband circular dichroism in patternable films of silver nanoparticles with chiral ligands.
This contribution reports the chiro-optic response of as-cast and photopatterned films of silver nanoparticles capped with photothermally-cleavable chiral ligands. We demonstrate broadband circular dichroism in these nanoparticle films, which is not present in dispersions of the nanoparticles capped with the chiral ligands. Long wavelength circular dichroism is derived from coupling of the plas...
متن کاملC1jm12345a 16806..16818
The paper reviews recent progress on chiral nanocrystal assemblies with induced optical chirality and related circular dichroism. Many natural molecules and biomolecules are chiral and exhibit remarkably strong optical chirality (circular dichroism) due to their amazingly uniform atomic composition in a large ensemble. It is challenging to realize artificial nanoscale systems with optical chira...
متن کاملPlasmonic polymers with strong chiroptical response for sensing molecular chirality.
We report on the chiroptical transfer and amplification effect observed in plasmonic polymers consisting of achiral gold nanorod monomers linked by cysteine chiral molecules in an end-to-end fashion. A new strategy for controlling the hot spots based circular dichroism (CD)-active sites in plasmonic polymers was developed to realize tailored and reproducible chiroptical activity in a controlled...
متن کاملOptical Chirality Enhancement in Twisted Arrays of Plasmonic Nano-rods
An important property of electromagnetic fields, which arises from the interaction between fields and chiral molecules, is called optical chirality. By enhancing this field property, while maintaining constant input power, we are able to increase absorption of circularly polarized light by chiral molecules of a certain handedness. This enhancement is achieved through the use of achiral plasmoni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017