Stochastic Submodular Maximization: The Case of Coverage Functions
نویسندگان
چکیده
Stochastic optimization of continuous objectives is at the heart of modern machine learning. However, many important problems are of discrete nature and often involve submodular objectives. We seek to unleash the power of stochastic continuous optimization, namely stochastic gradient descent and its variants, to such discrete problems. We first introduce the problem of stochastic submodular optimization, where one needs to optimize a submodular objective which is given as an expectation. Our model captures situations where the discrete objective arises as an empirical risk (e.g., in the case of exemplar-based clustering), or is given as an explicit stochastic model (e.g., in the case of influence maximization in social networks). By exploiting that common extensions act linearly on the class of submodular functions, we employ projected stochastic gradient ascent and its variants in the continuous domain, and perform rounding to obtain discrete solutions. We focus on the rich and widely used family of weighted coverage functions. We show that our approach yields solutions that are guaranteed to match the optimal approximation guarantees, while reducing the computational cost by several orders of magnitude, as we demonstrate empirically.
منابع مشابه
Locally Adaptive Optimization: Adaptive Seeding for Monotone Submodular Functions
The Adaptive Seeding problem is an algorithmic challenge motivated by influence maximization in social networks: One seeks to select among certain accessible nodes in a network, and then select, adaptively, among neighbors of those nodes as they become accessible in order to maximize a global objective function. More generally, adaptive seeding is a stochastic optimization framework where the c...
متن کاملDiscrete Stochastic Submodular Maximization: Adaptive vs. Non-adaptive vs. Offline
We consider the problem of stochastic monotone submodular function maximization, subject to constraints. We give results on adaptivity gaps, and on the gap between the optimal offline and online solutions. We present a procedure that transforms a decision tree (adaptive algorithm) into a non-adaptive chain. We prove that this chain achieves at least τ times the utility of the decision tree, ove...
متن کاملDeterministic & Adaptive Non-Submodular Maximizationvia the Primal Curvature
While greedy algorithms have long been observed to perform well on a wide variety of problems, up to now approximation ratios have only been known for their application to problems having submodular objective functions f . Since many practical problems have non-submodular f , there is a critical need to devise new techniques to bound the performance of greedy algorithms in the case of non-submo...
متن کاملMonotone Submodular Maximization over a Matroid via Non-Oblivious Local Search
We present an optimal, combinatorial 1−1/e approximation algorithm for monotone submodular optimization over a matroid constraint. Compared to the continuous greedy algorithm (Calinescu, Chekuri, Pál and Vondrák, 2008), our algorithm is extremely simple and requires no rounding. It consists of the greedy algorithm followed by local search. Both phases are run not on the actual objective functio...
متن کاملOnline Submodular Welfare Maximization: Greedy is Optimal
We prove that no online algorithm (even randomized, against an oblivious adversary) is better than 1/2competitive for welfare maximization with coverage valuations, unless NP = RP . Since the Greedy algorithm is known to be 1/2-competitive for monotone submodular valuations, of which coverage is a special case, this proves that Greedy provides the optimal competitive ratio. On the other hand, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017