Δ9-Tetrahydrocannabinol decreases willingness to exert cognitive effort in male rats.
نویسندگان
چکیده
BACKGROUND Acceptance of cannabis use is growing. However, prolonged use is associated with diminished psychosocial outcomes, potentially mediated by drug-induced cognitive impairments. Δ9-Tetrahydrocannabinol (THC) is the main psychoactive ingredient in cannabis, yet other phytocannabinoids in the plant, such as cannabidiol (CBD), have unique properties. Given that CBD can modulate the undesirable effects of THC, therapeutic agents, such as nabiximols, contain higher CBD:THC ratios than illicit marijuana. We tested the hypothesis that THC impairs a relevant cognitive function for long-term success, namely willingness to exert cognitive effort for greater rewards, and that CBD could attenuate such decision-making impairments. METHODS Male Long-Evans rats (n = 29) performing the rat cognitive effort task (rCET) received acute THC and CBD, independently and concurrently, in addition to other cannabinoids. Rats chose between 2 options differing in reward magnitude, but also in the cognitive effort (attentional load) required to obtain them. RESULTS We found that THC decreased choice of hard trials without impairing the animals' ability to accurately complete them. Strikingly, this impairment was correlated with CB1 receptor density in the medial prefrontal cortex - an area previously implicated in effortful decision-making. In contrast, CBD did not affect choice. Coadministration of 1:1 CBD:THC matching that in nabiximols modestly attenuated the deleterious effects of THC in "slacker" rats. LIMITATIONS Only male rats were investigated, and the THC/CBD coadministration experiment was carried out in a subset of individuals. CONCLUSION These findings confirm that THC, but not CBD, selectively impairs decision-making involving cognitive effort costs. However, coadministration of CBD only partially ameliorates such THC-induced dysfunction.
منابع مشابه
Evaluation of Δ9-tetrahydrocannabinol metabolites and oxidative stress in type 2 diabetic rats
Objective(s): The object of the study is to examine the effects of Δ9-tetrahydrocannabinol (THC) against oxidative stress in the blood and excretion of THC metabolites in urine of type 2 diabetic rats. Materials and Methods: The control (n=8), THC control (n=6), diabetes (n=8) and diabetes + THC (n=7) groups were created. Type 2 diabetes was induced by nicotinamide (NA, 85 mg/kg) + streptozotoc...
متن کاملAdolescent Female Cannabinoid Exposure Diminishes the Reward-Facilitating Effects of Δ9-Tetrahydrocannabinol and d-Amphetamine in the Adult Male Offspring
Marijuana is currently the most commonly abused illicit drug. According to recent studies, cannabinoid use occurring prior to pregnancy can impact brain plasticity and behavior in future generations. The purpose of the present study was to determine whether adolescent exposure of female rats to Δ9-tetrahydrocannabinol (Δ9-THC) induces transgenerational effects on the reward-facilitating effects...
متن کاملΔ9-Tetrahydrocannabinol Prevents Cardiovascular Dysfunction in STZ-Diabetic Wistar-Kyoto Rats
The aim of this study was to determine if chronic, low-dose administration of a nonspecific cannabinoid receptor agonist could provide cardioprotective effects in a model of type I diabetes mellitus. Diabetes was induced in eight-week-old male Wistar-Kyoto rats via a single intravenous dose of streptozotocin (65 mg kg-1). Following the induction of diabetes, Δ9-tetrahydrocannabinol was administ...
متن کاملΔ9-Tetrahydrocannabinol Prevents Methamphetamine-Induced Neurotoxicity
Methamphetamine (METH) is a potent psychostimulant with neurotoxic properties. Heavy use increases the activation of neuronal nitric oxide synthase (nNOS), production of peroxynitrites, microglia stimulation, and induces hyperthermia and anorectic effects. Most METH recreational users also consume cannabis. Preclinical studies have shown that natural (Δ9-tetrahydrocannabinol, Δ9-THC) and synthe...
متن کاملLong-lasting alterations of hippocampal GABAergic neurotransmission in adult rats following perinatal Δ9-THC exposure.
The long-lasting effects of gestational cannabinoids exposure on the adult brain of the offspring are still controversial. It has already been shown that pre- or perinatal cannabinoids exposure induces learning and memory disruption in rat adult offspring, associated with permanent alterations of cortical glutamatergic neurotransmission and cognitive deficits. In the present study, the risk of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of psychiatry & neuroscience : JPN
دوره 41 6 شماره
صفحات -
تاریخ انتشار 2016