Relative Attributes for Enhanced Human-Machine Communication
نویسندگان
چکیده
We propose to model relative attributes that capture the relationships between images and objects in terms of human-nameable visual properties. For example, the models can capture that animal A is ‘furrier’ than animal B, or image X is ‘brighter’ than image B. Given training data stating how object/scene categories relate according to different attributes, we learn a ranking function per attribute. The learned ranking functions predict the relative strength of each property in novel images. We show how these relative attribute predictions enable a variety of novel applications, including zero-shot learning from relative comparisons, automatic image description, image search with interactive feedback, and active learning of discriminative classifiers. We overview results demonstrating these applications with images of faces and natural scenes. Overall, we find that relative attributes enhance the precision of communication between humans and computer vision algorithms, providing the richer language needed to fluidly “teach” a system about visual concepts.
منابع مشابه
Investigation of Customer Priorities for Machine Made Carpet Through Conjoint and Cluster Analysis (Case Study in Yazd, Iran)
The machine made carpet industry is one of the main and most famous industries in Iran and especially in the city of Yazd. However there is little information about customer preferences for different attributes of this product. In this article we tried to estimate the relative importance of the main attributes affecting customer desire for purchasing machine made carpet and the utility values f...
متن کاملSupport Vector Machine Based Facies Classification Using Seismic Attributes in an Oil Field of Iran
Seismic facies analysis (SFA) aims to classify similar seismic traces based on amplitude, phase, frequency, and other seismic attributes. SFA has proven useful in interpreting seismic data, allowing significant information on subsurface geological structures to be extracted. While facies analysis has been widely investigated through unsupervised-classification-based studies, there are few cases...
متن کاملSimultaneous Active Learning of Classifiers & Attributes via Relative Feedback
Active learning provides useful tools to reduce annotation costs without compromising classifier performance. However it traditionally views the supervisor simply as a labeling machine. Recently a new interactive learning paradigm was introduced that allows the supervisor to additionally convey useful domain knowledge using attributes. The learner first conveys its belief about an actively chos...
متن کاملA Comprehensive Mathematical Model for the Design of a Dynamic Cellular Manufacturing System Integrated with Production Planning and Several Manufacturing Attributes
Dynamic cellular manufacturing systems, Mixed-integer non-linear programming, Production planning, Manufacturing attributes This paper presents a novel mixed-integer non-linear programming model for the design of a dynamic cellular manufacturing system (DCMS) based on production planning (PP) decisions and several manufacturing attributes. Such an integrated DCMS model with an extensi...
متن کاملارزیابی یک سیستم بینایی ماشین از راه اندازهگیری و تخمین شماری از ویژگیهای فیزیکی پسته
In order to increase the role of machine vision in agricultural research in Iran, especially for measuring physical attributes of seeds, a machine vision system was developed using a computer, a capture card, a video camera and a light box. All equipment was purchased from domestic markets. Computer programs were developed for hardware setup and for image processing applications. The programs p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012