Collective dynamics in systems of active Brownian particles with dissipative interactions.
نویسندگان
چکیده
We use computer simulations to study the onset of collective motion in systems of interacting active particles. Our model is a swarm of active Brownian particles with an internal energy depot and interactions inspired by the dissipative particle dynamics method, imposing pairwise friction force on the nearest neighbors. We study orientational ordering in a 2D system as a function of energy influx rate and particle density. The model demonstrates a transition into the ordered state on increasing the particle density and increasing the input power. Although both the alignment mechanism and the character of individual motion in our model differ from those in the well-studied Vicsek model, it demonstrates identical statistical properties and phase behavior.
منابع مشابه
Nonlinear Dynamics of Active Brownian Particles
We consider finite systems of interacting Brownian particles including active friction in the framework of nonlinear dynamics and statistical/stochastic theory. First we study the statistical properties for 1−d systems of masses connected by Toda springs which are imbedded into a heat bath. Including negative friction we find N + 1 attractors of motion including an attractor describing dissipat...
متن کاملRatchet Effects in Active Matter Systems
Ratchet effects can arise for single or collectively interacting Brownian particles on an asymmetric substrate when a net dc transport is produced by an externally applied ac driving force or by periodically flashing the substrate. Recently, a new class of active ratchet systems has been realized through the use of active matter, which are self-propelled units that can be biological or non-biol...
متن کاملMesoscopic virial equation for nonequilibrium statistical mechanics
We derive a class of mesoscopic virial equations governing energy partition between conjugate position and momentum variables of individual degrees of freedom. They are shown to apply to a wide range of nonequilibrium steady states with stochastic (Langevin) and deterministic (Nosé–Hoover) dynamics, and to extend to collective modes for models of heat-conducting lattices. A macroscopic virial t...
متن کاملApplication of the Dissipative Particle Dynamics Method to Ferromagnetic Colloidal Dispersions
We have investigated the validity of the application of the dissipative particle dynamics (DPD) method to ferromagnetic colloidal dispersions by conducting DPD simulations for a two-dimensional system. Firstly, the interaction between dissipative and magnetic particles has been idealized as some model potentials, and DPD simulations have been carried out using such model potentials for a two ma...
متن کاملChapter 1 Applications of Density Functional Theory in Soft Condensed Matter
Applications of classical density functional theory (DFT) to soft matter systems like colloids, liquid crystals and polymer solutions are discussed with a focus on the freezing transition and on nonequilibrium Brownian dynamics. First, after a brief reminder of equilibrium density functional theory, DFT is applied to the freezing transition of liquids into crystalline lattices. In particular, s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 87 5 شماره
صفحات -
تاریخ انتشار 2013