Chemotaxis in Vibrio cholerae.

نویسندگان

  • Markus A Boin
  • Melissa J Austin
  • Claudia C Häse
چکیده

The ability of motile bacteria to swim toward or away from specific environmental stimuli, such as nutrients, oxygen, or light provides cells with a survival advantage, especially under nutrient-limiting conditions. This behavior, called chemotaxis, is mediated by the bacteria changing direction by briefly reversing the direction of rotation of the flagellar motors. A sophisticated signal transduction system, consisting of signal transducer proteins, a histidine kinase, a response regulator, a coupling protein, and enzymes that mediate sensory adaptation, relates the input signal to the flagellar motor. Chemotaxis has been extensively studied in bacteria such as Escherichia coli and Salmonella enterica serovar Typhimurium, and depends on the activity of single copies of proteins in a linear pathway. However, growing evidence suggests that chemotaxis in other bacteria is more complex with many bacterial species having multiple paralogues of the various chemotaxis genes found in E. coli and, in most cases, the detailed functions of these potentially redundant genes have not been elucidated. Although the completed genome of Vibrio cholerae, the causative agent of cholera, predicted a multitude of genes with homology to known chemotaxis-related genes, little is known about their relative contribution to chemotaxis or other cellular functions. Furthermore, the role of chemotaxis during the environmental or infectious phases of this organism is not yet fully understood. This review will focus on the complex relationship between chemotaxis and virulence in V. cholerae.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Vibrio cholerae ToxR Regulon Encodes Host-Specific Chemotaxis Proteins that Function in Intestinal Colonization.

Virulence gene regulation in Vibrio cholerae is under the control of the ToxR-ToxT regulatory cascade. Chemotaxis and net motility have been shown to influence the infectivity of Vibrio cholerae. V. cholerae toxR mutants do not synthesize proteins required for chemotaxis towards mucus. The inability of the toxR mutant strain to recognize and swim towards mucus is due to their failure to synthes...

متن کامل

Analyses of the roles of the three cheA homologs in chemotaxis of Vibrio cholerae.

The Vibrio cholerae genome revealed the presence of multiple sets of chemotaxis genes, including three cheA gene homologs. We found that the cheA-2, but not cheA-1 or cheA-3, gene is essential for chemotaxis under standard conditions. Loss of chemotaxis had no effect on virulence factor expression in vitro.

متن کامل

The Vibrio cholerae acfB colonization determinant encodes an inner membrane protein that is related to a family of signal-transducing proteins.

Vibrio cholerae accessory colonization factor genes (acfA, B, C, and D) are required for efficient intestinal colonization. Expression of acf genes is under the control of a regulatory cascade that also directs the synthesis of cholera toxin and proteins involved in the biogenesis of the toxin-coregulated pilus. The gene for acfB was cloned by using an acfB::TnphoA fusion junction to probe a V....

متن کامل

Use of in vivo-induced antigen technology (IVIAT) to identify genes uniquely expressed during human infection with Vibrio cholerae.

In vivo-induced antigen technology is a method to identify proteins expressed by pathogenic bacteria during human infection. Sera from 10 patients convalescing from cholera infection in Bangladesh were pooled, adsorbed against in vitro-grown El Tor Vibrio cholerae O1, and used to probe a genomic expression library in Escherichia coli constructed from El Tor V. cholerae O1 strain N16961. We iden...

متن کامل

Vibrio cholerae Flagellar Synthesis and Virulence

Vibrio cholerae is a Gram-negative bacterium with a single sheathed polar flagellum (Fig. 1.). V. cholerae causes the severe diarrheal disease cholera in humans when it colonizes the small intestine and expresses various virulence factors, including cholera toxin (CT) and toxin coregulated pilus (TCP). V. cholerae is also a natural inhabitant of the marine environment, where it forms biofilms o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • FEMS microbiology letters

دوره 239 1  شماره 

صفحات  -

تاریخ انتشار 2004