Hildebrand and Hansen solubility parameters from molecular dynamics with applications to electronic nose polymer sensors.

نویسندگان

  • M Belmares
  • M Blanco
  • W A Goddard
  • R B Ross
  • G Caldwell
  • S-H Chou
  • J Pham
  • P M Olofson
  • Cristina Thomas
چکیده

We introduce the Cohesive Energy Density (CED) method, a multiple sampling Molecular Dynamics computer simulation procedure that may offer higher consistency in the estimation of Hildebrand and Hansen solubility parameters. The use of a multiple sampling technique, combined with a simple but consistent molecular force field and quantum mechanically determined atomic charges, allows for the precise determination of solubility parameters in a systematic way (sigma = 0.4 hildebrands). The CED method yields first-principles Hildebrand parameter predictions in good agreement with experiment [root-mean-square (rms) = 1.1 hildebrands]. We apply the CED method to model the Caltech electronic nose, an array of 20 polymer sensors. Sensors are built with conducting leads connected through thin-film polymers loaded with carbon black. Odorant detection relies on a change in electric resistivity of the polymer film as function of the amount of swelling caused by the odorant compound. The amount of swelling depends upon the chemical composition of the polymer and the odorant molecule. The pattern is unique, and unambiguously identifies the compound. Experimentally determined changes in relative resistivity of seven polymer sensors upon exposure to 24 solvent vapors were modeled with the CED estimated Hansen solubility components. Predictions of polymer sensor responses result in Pearson R2 coefficients between 0.82 and 0.99.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In Tube Integrated Electronic Nose System on a Flexible Polymer Substrate

The fabrication of electronic devices, such as gas sensors on flexible polymer substrates, enables the use of electronics in applications where conventional devices on stiff substrates could not be used. We demonstrate the development of a new intra-tube electronic-nose (e-nose) gas sensor device with multiple sensors fabricated and integrated on a flexible substrate. For this purpose, we devel...

متن کامل

Molecular modeling of polymer composite-analyte interactions in electronic nose sensors.

We report a molecular modeling study to investigate the polymer-carbon black (CB) composite-analyte interactions in resistive sensors. These sensors comprise the JPL electronic nose (ENose) sensing array developed for monitoring breathing air in human habitats. The polymer in the composite is modeled based on its stereoisomerism and sequence isomerism, while the CB is modeled as uncharged napht...

متن کامل

Hansen Solubility Parameters - A User's Handbook

Introduction Hildebrand Parameters and Basic Polymer Solution Thermodynamics Hansen Solubility Parameters Methods and Problems in the Determination of Partial Solubility Parameters Calculation of the Dispersion Solubility Parameter, δD Calculation of the Polar Solubility Parameter, δP Calculation of the Hydrogen Bonding Solubility Parameter, δH Supplementary Calculations and Procedures Temperat...

متن کامل

Polymer-Based Micro-Sensor Paired Arrays for the Determination of Primary Alcohol Vapors

An artificial olfactory system (or “electronic nose”) has been developed to investigate the interactions between polymer-modified sensors with odorant vapors from the headspace of primary alcohol samples. Complementary pairs of polymer-coated quartz crystal microbalance sensors and polymer/carbon black-coated microresistance sensors have been used to produce a characteristic value for the odora...

متن کامل

Mechanical Properties of CNT-Reinforced Polymer Nano-composites: A Molecular Dynamics Study

Understanding the mechanism underlying the behavior of polymer-based nanocomposites requires investigation at the molecular level. In the current study, an atomistic simulation based on molecular dynamics was performed to characterize the mechanical properties of polycarbonate (PC) nanocomposites reinforced with single-walled armchair carbon nanotubes (SWCNT). The stiffness matrix and elastic p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of computational chemistry

دوره 25 15  شماره 

صفحات  -

تاریخ انتشار 2004