Under-resourced speech recognition based on the speech manifold

نویسندگان

  • Reza Sahraeian
  • Dirk Van Compernolle
  • Febe de Wet
چکیده

Conventional acoustic modeling involves estimating many parameters to effectively model feature distributions. The sparseness of speech and text data, however, degrades the reliability of the estimation process and makes speech recognition a challenging task. In this paper, we propose to use a nonlinear feature transformation based on the speech manifold called Intrinsic Spectral Analysis (ISA) for under-resourced speech recognition. First, we investigate the usefulness of ISA features in low resource scenarios for both Gaussian mixture and deep neural network (DNN) acoustic modeling. Moreover, due to the connection of ISA features to the articulatory configuration space, this feature space is potentially less language dependent than other typical spectral-based features, and therefore exploiting out-of-language data in this feature space is beneficial. We demonstrate the positive effect of ISA in the frame work of multilingual DNN systems where Flemish and Afrikaans are used as donor and under-resourced target languages respectively. We compare the performance of ISA with conventional features in both multilingual and under-resourced monolingual conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions

Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC) in a speech emotion recognition system. We investigate its perfor...

متن کامل

Towards automatic cross-lingual acoustic modelling applied to HMM-based speech synthesis for under-resourced languages

Nowadays Human Computer Interaction (HCI) can also be achieved with voice user interfaces (VUIs). To enable devices to communicate with humans by speech in the user’s own language, low-cost language portability is often discussed and analysed. One of the most time-consuming parts for the language-adaptation process of VUIcapable applications is the target-language speech-data acquisition. Such ...

متن کامل

Speech data collection in an under-resourced language within a multilingual context

In this paper, we present an end-to-end solution to the development of an automatic speech recognition (ASR) system in typical under-resourced languages, where the target language is likely to be influenced by one more embedded foreign languages. We first describe the collection and processing of the text corpus crawled from the World Wide Web using the Rapid Language Adaptation Toolkit. In par...

متن کامل

Automatic Speech Recognition for Under-Resourced Languages:

Speech processing for under-resourced languages is an active field of research, which has experienced significant progress during the past decade. We propose, in this paper, a survey that focuses on automatic speech recognition (ASR) for these languages. The definition of under-resourced languages and the challenges associated to them are first defined. The main part of the paper is a literatur...

متن کامل

Persian Phone Recognition Using Acoustic Landmarks and Neural Network-based variability compensation methods

Speech recognition is a subfield of artificial intelligence that develops technologies to convert speech utterance into transcription. So far, various methods such as hidden Markov models and artificial neural networks have been used to develop speech recognition systems. In most of these systems, the speech signal frames are processed uniformly, while the information is not evenly distributed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015