Parsing Syntactic and Semantic Dependencies with Two Single-Stage Maximum Entropy Models
نویسندگان
چکیده
This paper describes our system to carry out the joint parsing of syntactic and semantic dependencies for our participation in the shared task of CoNLL-2008. We illustrate that both syntactic parsing and semantic parsing can be transformed into a word-pair classification problem and implemented as a single-stage system with the aid of maximum entropy modeling. Our system ranks the fourth in the closed track for the task with the following performance on the WSJ+Brown test set: 81.44% labeled macro F1 for the overall task, 86.66% labeled attachment for syntactic dependencies, and 76.16% labeled F1 for semantic dependencies.
منابع مشابه
Parsing Syntactic and Semantic Dependencies for Multiple Languages with A Pipeline Approach
This paper describes a pipelined approach for CoNLL-09 shared task on joint learning of syntactic and semantic dependencies. In the system, we handle syntactic dependency parsing with a transition-based approach and utilize MaltParser as the base model. For SRL, we utilize a Maximum Entropy model to identify predicate senses and classify arguments. Experimental results show that the average per...
متن کاملA Joint Syntactic and Semantic Dependency Parsing System based on Maximum Entropy Models
A joint syntactic and semantic dependency parsing system submitted to the CoNLL-2009 shared task is presented in this paper. The system is composed of three components: a syntactic dependency parser, a predicate classifier and a semantic parser. The first-order MSTParser is used as our syntactic dependency pasrser. Projective and non-projective MSTParsers are compared with each other on seven l...
متن کاملبرچسبزنی خودکار نقشهای معنایی در جملات فارسی به کمک درختهای وابستگی
Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...
متن کاملThe Integration of Dependency Relation Classification and Semantic Role Labeling Using Bilayer Maximum Entropy Markov Models
This paper describes a system to solve the joint learning of syntactic and semantic dependencies. An directed graphical model is put forward to integrate dependency relation classification and semantic role labeling. We present a bilayer directed graph to express probabilistic relationships between syntactic and semantic relations. Maximum Entropy Markov Models are implemented to estimate condi...
متن کاملApproximate Maximum-Entropy Integration of Syntactic and Semantic Constraints
Statistical approaches to natural language parsing and interpretation have a number of advantages but thus far have failed to incorporate compositional generalizations found in traditional structural models. A major reason for this is the inability of most statistical language models being used to represent relational constraints, the connectionist variable binding problem being a prominent cas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008