Multimodal sensory integration in single cerebellar granule cells in vivo.

نویسندگان

  • Taro Ishikawa
  • Misa Shimuta
  • Michael Häusser
چکیده

The mammalian cerebellum is a highly multimodal structure, receiving inputs from multiple sensory modalities and integrating them during complex sensorimotor coordination tasks. Previously, using cell-type-specific anatomical projection mapping, it was shown that multimodal pathways converge onto individual cerebellar granule cells (Huang et al., 2013). Here we directly measure synaptic currents using in vivo patch-clamp recordings and confirm that a subset of single granule cells receive convergent functional multimodal (somatosensory, auditory, and visual) inputs via separate mossy fibers. Furthermore, we show that the integration of multimodal signals by granule cells can enhance action potential output. These recordings directly demonstrate functional convergence of multimodal signals onto single granule cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multimodal Integration in Granule Cells as a Basis for Associative Plasticity and Sensory Prediction in a Cerebellum-like Circuit

The recoding of diverse sensory and motor signals by granule cells (GCs) is probably critical for the function of cerebellar circuits, yet the nature of these transformations and their significance for cerebellar information processing remain poorly understood. In cerebellum-like structures in fish, anti-Hebbian plasticity at parallel fiber synapses generates "negative images" that act to cance...

متن کامل

Sensory Integration in Single Neurons of the Cerebellar Cortex

To understand the computations performed by the neurons within cortical structures it is essential to determine the relationship between sensoryevoked synaptic input and the resulting pattern of output spikes. In the cerebellum, granule cells constitute the input layer, translating mossy fibre signals into parallel fibre input to Purkinje cells. Until now their small size and dense packing have...

متن کامل

Sensorimotor Representations in Cerebellar Granule Cells in Larval Zebrafish Are Dense, Spatially Organized, and Non-temporally Patterned

A fundamental question in neurobiology is how animals integrate external sensory information from their environment with self-generated motor and sensory signals in order to guide motor behavior and adaptation. The cerebellum is a vertebrate hindbrain region where all of these signals converge and that has been implicated in the acquisition, coordination, and calibration of motor activity. Theo...

متن کامل

Convergence of pontine and proprioceptive streams onto multimodal cerebellar granule cells

Cerebellar granule cells constitute the majority of neurons in the brain and are the primary conveyors of sensory and motor-related mossy fiber information to Purkinje cells. The functional capability of the cerebellum hinges on whether individual granule cells receive mossy fiber inputs from multiple precerebellar nuclei or are instead unimodal; this distinction is unresolved. Using cell-type-...

متن کامل

Exploring the significance of morphological diversity for cerebellar granule cell excitability

The relatively simple and compact morphology of cerebellar granule cells (CGCs) has led to the view that heterogeneity in CGC shape has negligible impact upon the integration of mossy fibre (MF) information. Following electrophysiological recording, 3D models were constructed from high-resolution imaging data to identify morphological features that could influence the coding of MF input pattern...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • eLife

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2015