On Numerical Resolution Requirements in Combustion Modeling

نویسندگان

  • Ashraf N. Al-Khateeb
  • Joseph M. Powers
  • Samuel Paolucci
چکیده

We discuss one-dimensional steady laminar premixed flames in a mixture of calorically imperfect ideal gases described by detailed kinetics and multi-component transport. The required spatial discretization to capture all detailed continuum physics in the reaction zone is determined through use of a robust method developed to rigorously calculate the finest length scale a posteriori. This is accomplished by reformulating the governing equations as a nonlinear system of differential algebraic equations. Then, the solution of the steady reaction zone structure is obtained, and the generalized eigenvalues of the locally linearized system are calculated at each point in the reaction zone. Their reciprocals provide all local length scales. Application of the method to laminar flames reveals that the finest length scale is on the order of 10−4 cm. Independent estimates from grid convergence studies on the continuum equations as well as from the underlying molecular collision theory verify the result. This finest length scale is orders of magnitude smaller than common engineering geometric scales, the discretization scales employed in nearly all multi-dimensional and/or unsteady laminar premixed flame simulations in the literature, and the flame thickness.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation of Subcooled Flow Boiling Occurring in Internal Combustion Engine Water Jacket by Numerical Modeling in a Channel with Hot Spot

Boiling heat transfer always has been proposed as a solution for enhancing heat transfer between the fluid and solid surfaces. Subcooled flow boiling is one of the mechanisms that occur in Internal Combustion Engine water jacket in which high amounts of heat is transferred. In this research, it has been tried to simulate subcooled flow boiling in a geometry similar to coolant channel inside the...

متن کامل

NUMERICAL MODELING OF THE COMBUSTION SYNTHESIS OF TiAl/Al2O3 COMPOSITE VIAMICROWAVE HEATING

Abstract: Microwave processing is one of the novel methods for combustion synthesis of intermetallic compounds andcomposites. This method brings about a lot of opportunities for processing of uniquely characterized materials. In thisstudy, the combustion synthesis of TiAl/Al2O3 composite via microwave heating has been investigated by thedevelopment of a heat transfer model including a microwave...

متن کامل

Mathematical Modeling and Numerical Investigation of Heat Flux at the External Surface of Cylinder of an Internal Combustion Engine

 Abstract: This study deals with modeling of heat flux at the external surface of combustion chamber wall in an internal combustion (IC) engine as a function of crank angle. This investigation results in an inverse heat conduction problem in the cylinder wall. Alifanov regularization method is used for solving this inverse problem. This problem study as an optimization problem in which a square...

متن کامل

Studies on Soot Formation and Combustion in Turbulent Spray Flames: Modeling and Experimental Measurement

The present study is concerned with measuring and simulating soot formation and combustion in turbulent liquid fuel spray flames. Soot concentrations inside the combustor are measured by filter paper technique. The simulation is based on the solution of the fully-coupled conservation equations for turbulent flow, chemical species kinetic modeling, fuel droplet evaporation and combustion and...

متن کامل

Resolution Requirements in Stochastic Field Simulation of Turbulent Premixed Flames

The spatial resolution requirements of the Stochastic Fields probability density function approach are investigated in the context of turbulent premixed combustion simulation. The Stochastic Fields approach is an attractive way to implement transported Probability Density Function modelling into Large Eddy Simulations of turbulent combustion. In premixed combustion LES, the numerical grid shoul...

متن کامل

Numerical Modeling and Simulation of Highly Preheated and Diluted Air Combustion Furnaces

This paper presents some of the results of the modeling and simulation of an industrial furnace under the conventional combustion as well as under the highly preheated and diluted air combustion (HPDAC) conditions. The results are obtained using a computer program written by authors in FORTRAN language. It was found that, the HPDAC offers a more uniform and relatively moderate gas temperature p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007