Spectral Multiplier Theorem for H Spaces Associated with Some Schrödinger Operators
نویسندگان
چکیده
Let Tt be the semigroup of linear operators generated by a Schrödinger operator −A = ∆− V , where V is a nonnegative polynomial. We say that f is an element of H1 A if the maximal function Mf(x) = supt>0 |Ttf(x)| belongs to L1. A criterion on functions F which implies boundedness of the operators F (A) on H1 A is given.
منابع مشابه
Spectral Multipliers for Schrödinger Operators with Pöschl-teller Potential
Spectral multiplier theorem for differential operators plays a significant role in harmonic analysis and PDEs. It is closely related to the study of the associated function spaces and Littlewood-Paley theory. Let H = −∆ + V be a Schrödinger operator on R, where V is real-valued. Spectral multipliers for H have been considered in [22, 16, 14, 15, 3] and [12] for positive potentials. The case of ...
متن کاملBesov Spaces for Schrödinger Operators with Barrier Potentials
Let H = −△ + V be a Schrödinger operator on the real line, where V = εχ[−1,1]. We define the Besov spaces for H by developing the associated Littlewood-Paley theory. This theory depends on the decay estimates of the spectral operator φj(H) in the high and low energies. We also prove a Mikhlin-Hörmander type multiplier theorem on these spaces, including the L boundedness result. Our approach has...
متن کامل. A P ] 3 O ct 2 00 6 SPECTRAL MULTIPLIERS FOR SCHRÖDINGER OPERATORS : I
Spectral multiplier theorem for differential operators plays a significant role in harmonic analysis and PDEs. It is closely related to the study of the associated function spaces and Littlewood-Paley theory. Let H = −∆ + V be a Schrödinger operator on R, where V is real-valued. Spectral multipliers for H have been considered in [22, 16, 14, 15, 3] and [12] for positive potentials. The case of ...
متن کاملHarmonic Analysis Related to Schrödinger Operators
In this article we give an overview on some recent development of Littlewood-Paley theory for Schrödinger operators. We extend the LittlewoodPaley theory for special potentials considered in the authors’ previous work. We elaborate our approach by considering potential in C∞ 0 or Schwartz class in one dimension. In particular the low energy estimates are treated by establishing some new and ref...
متن کاملHigher Derivations Associated with the Cauchy-Jensen Type Mapping
Let H be an infinite--dimensional Hilbert space and K(H) be the set of all compact operators on H. We will adopt spectral theorem for compact self-adjoint operators, to investigate of higher derivation and higher Jordan derivation on K(H) associated with the following cauchy-Jencen type functional equation 2f(frac{T+S}{2}+R)=f(T)+f(S)+2f(R) for all T,S,Rin K(H).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999