The aryl hydrocarbon receptor binds to E2F1 and inhibits E2F1-induced apoptosis.

نویسندگان

  • Jennifer L Marlowe
  • Yunxia Fan
  • Xiaoqing Chang
  • Li Peng
  • Erik S Knudsen
  • Ying Xia
  • Alvaro Puga
چکیده

Cellular stress by DNA damage induces checkpoint kinase-2 (CHK2)-mediated phosphorylation and stabilization of the E2F1 transcription factor, leading to induction of apoptosis by activation of a subset of proapoptotic E2F1 target genes, including Apaf1 and p73. This report characterizes an interaction between the aryl hydrocarbon (Ah) receptor (AHR), a ligand-activated transcription factor, and E2F1 that results in the attenuation of E2F1-mediated apoptosis. In Ahr(-/-) fibroblasts stably transfected with a doxycycline-regulated AHR expression vector, inhibition of AHR expression causes a significant elevation of oxidative stress, gammaH2A.X histone phosphorylation, and E2F1-dependent apoptosis, which can be blocked by small interfering RNA-mediated knockdown of E2F1 expression. In contrast, ligand-dependent AHR activation protects these cells from etoposide-induced cell death. In cells expressing both proteins, AHR and E2F1 interact independently of the retinoblastoma protein (RB), because AHR and E2F1 coimmunoprecipitate from extracts of RB-negative cells. Additionally, chromatin immunoprecipitation assays indicate that AHR and E2F1 bind to the Apaf1 promoter at a region containing a consensus E2F1 binding site but no AHR binding sites. AHR activation represses Apaf1 and TAp73 mRNA induction by a constitutively active CHK2 expression vector. Furthermore, AHR overexpression blocks the transcriptional induction of Apaf1 and p73 and the accumulation of sub-G(0)/G(1) cells resulting from ectopic overexpression of E2F1. These results point to a proproliferative, antiapoptotic function of the Ah receptor that likely plays a role in tumor progression.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-96: Appositional Expressions of Cyclin D1 and E2F1 Gene Machineries in Mycooestrogen Zeralenone-Induced Apoptosis in Testicular Tissue of Rats

Background: Zearalenone (ZEA) is known as a nonsteroidal oestrogenic mycotoxin produced by different species of Fusarium fungi. ZEA is known for its competitive effects with the natural 17-β estradiol to bind with the specific binding sites of the estrogen receptors (Ers). On the other hand, the cyclin family (especially cyclin D1) and E2F1 genes are the checkpoint genes involved in cell cycle....

متن کامل

AhR-E2F1-KGFR signaling is involved in KGF-induced intestinal epithelial cell proliferation

Keratinocyte growth factor (KGF) stimulates intestinal epithelial cell proliferation upon binding to the KGF receptor (KGFR). The activated aryl hydrocarbon receptor (AhR) serves an important role in the development of tissues by promoting the expression of AhR receptors, which can regulate cell proliferation. In the present study, the signaling pathway between AhR and KGFR in investigated with...

متن کامل

Regulation of E2F1 function by the nuclear corepressor KAP1.

KAP1 is a nuclear corepressor with conserved domains for RING finger, B boxes, leucine zipper alpha helical coiled-coil region, plant homeo domain finger, and bromo domain. The plant homeo domain finger and bromo domain of KAP1 cooperatively function as a transcription repression domain by recruiting the histone deacetylase complex NuRD and histone H3 lysine 9-specific methyltransferase SETDB1....

متن کامل

E2F6 inhibits cobalt chloride-mimetic hypoxia-induced apoptosis through E2F1.

E2F6, a potent transcriptional repressor, plays important roles in cell cycle regulation. However, roles of E2F6 in hypoxia-induced apoptosis are unknown. Here, we demonstrated biological functions of E2F6 in hypoxia-induced apoptosis and regulatory pathways. During hypoxia (CoCl(2), 800 microM)-induced human embryonic kidney 293 cell apoptosis, E2F6 expression was down-regulated with concurren...

متن کامل

Correction: Aryl Hydrocarbon Receptor Downregulates MYCN Expression and Promotes Cell Differentiation of Neuroblastoma

Neuroblastoma (NB) is the most common malignant disease of infancy. MYCN amplification is a prognostic factor for NB and is a sign of highly malignant disease and poor patient prognosis. In this study, we aimed to investigate novel MYCN-related genes and assess how they affect NB cell behavior. The different gene expression found in 10 MYCN amplification NB tumors and 10 tumors with normal MYCN...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular biology of the cell

دوره 19 8  شماره 

صفحات  -

تاریخ انتشار 2008