Rapid vesicular release, quantal variability, and spillover contribute to the precision and reliability of transmission at a glomerular synapse.

نویسندگان

  • Peter B Sargent
  • Chiara Saviane
  • Thomas A Nielsen
  • David A DiGregorio
  • R Angus Silver
چکیده

The amplitude and shape of EPSC waveforms are thought to be important determinants of information processing and storage in the brain, yet relatively little is known about the origins of EPSC variability or how it affects synaptic signaling. We investigated the stochastic determinants of AMPA receptor-mediated EPSC variability at cerebellar mossy fiber-granule cell (MF-GC) connections by combining multiple-probability fluctuation analysis (MPFA) and deconvolution methods. The properties of MF connections with a single release site and the effects of the rapidly equilibrating competitive antagonist kynurenic acid on EPSCs suggest that receptors are not saturated by glutamate during a quantal event and that quanta sum linearly over a wide range of release probabilities. MPFA revealed an average of five vesicular release sites per MF-GC connection. Our results show that the time course of vesicular release is rapid (decay, tau = 75 micros) and independent of release probability, introducing little jitter in the shape or timing of the quantal component of the EPSC at physiological temperature. Moreover, the peak vesicular release rate per release site after an action potential (AP) (approximately 3 ms(-1)) is substantially higher than previously reported for central synapses. Interaction of amplitude fluctuations arising from quantal release and quantal size with the slower, low variability spillover-mediated current produce substantial variability in EPSC shape. Our simulations of MF-GC transmission suggest that quantal variability and transmitter spillover extend the voltage from which AP threshold can be crossed, improving reliability, and that fast vesicular release allows precise signaling across MF connections with heterogeneous weights.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Helping Thy Neighbors Spillover at the Mossy Fiber Glomerulus

Neurotransmitter "spillover" between neighboring synapses challenges the principle of synapse specificity. In this issue of Neuron, show that release from neighboring presynaptic sites contributes significantly to AMPA receptor-mediated postsynaptic currents at cerebellar mossy fiber synapses. Unexpectedly, spillover is predicted to improve the reliability and reduce the variability of transmis...

متن کامل

Quantal amplitude at the cone ribbon synapse can be adjusted by changes in cytosolic glutamate

PURPOSE Vision is encoded at photoreceptor synapses by the number of released vesicles and size of the post-synaptic response. We hypothesized that elevating cytosolic glutamate could enhance quantal size by increasing glutamate in vesicles. METHODS We introduced glutamate (10-40 mM) into cone terminals through a patch pipette and recorded excitatory post-synaptic currents (EPSCs) from horizo...

متن کامل

A Monte Carlo model reveals independent signaling at central glutamatergic synapses.

We have developed a biophysically realistic model of receptor activation at an idealized central glutamatergic synapse that uses Monte Carlo techniques to simulate the stochastic nature of transmission following release of a single synaptic vesicle. For the a synapse with 80 AMPA and 20 NMDA receptors, a single quantum, with 3000 glutamate molecules, opened approximately 3 NMDARs and 20 AMPARs....

متن کامل

Influence of Glutamate Transporters on Spillover in a Monte Carlo Model of Hippocampal Neuropil

The goal of this study was to explore the effect of glutamate transporter density on spillover activation of AMPA and NMDA receptors at neighboring synapses by diffusion of glutamate in extracellular space following fast excitatory synaptic release at an active synapse. We used MCell, a Monte Carlo simulator of molecular signaling, to study the release of glutamate and diffusion in 3-D geometri...

متن کامل

Spillover of Glutamate onto Synaptic AMPA Receptors Enhances Fast Transmission at a Cerebellar Synapse

Diffusion of glutamate from the synaptic cleft can activate high-affinity receptors, but is not thought to contribute to fast AMPA receptor-mediated transmission. Here, we show that single AMPA receptor EPSCs at the cerebellar mossy fiber-granule cell connection are mediated by both direct release of glutamate and rapid diffusion of glutamate from neighboring synapses. Immunogold localization r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 25 36  شماره 

صفحات  -

تاریخ انتشار 2005