Long Time Dynamics for Forced and Weakly Damped Kdv on the Torus

نویسنده

  • M. B. ERDOĞAN
چکیده

The forced and weakly damped Korteweg-de Vries (KdV) equation with periodic boundary conditions is considered. Starting from L and mean-zero initial data we prove that the solution decomposes into two parts; a linear one which decays to zero as time goes to infinity and a nonlinear one which always belongs to a smoother space. As a corollary we prove that all solutions are attracted by a ball in H, s ∈ (0, 1), whose radius depends only on s, the L norm of the forcing term and the damping parameter. This gives a new proof for the existence of a smooth global attractor and provides quantitative information on the size of the attractor set in H. In addition we prove that higher order Sobolev norms are bounded for all positive times.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forced oscillations of a damped‎ ‎Korteweg-de Vries equation on a periodic domain

‎In this paper‎, ‎we investigate a damped Korteweg-de‎ ‎Vries equation with forcing on a periodic domain‎ ‎$mathbb{T}=mathbb{R}/(2pimathbb{Z})$‎. ‎We can obtain that if the‎ ‎forcing is periodic with small amplitude‎, ‎then the solution becomes‎ ‎eventually time-periodic.

متن کامل

Asymptotic Smoothing and the Global Attractor of a Weakly Damped Kdv Equation on the Real Line

The existence of the global attractor of a weakly damped, forced Korteweg-de Vries equation in the phase space L(R) is proved. An optimal asymptotic smoothing effect of the equation is also shown, namely, that for forces in L(R), the global attractor in the phase space L(R) is actually a compact set in H(R). The energy equation method is used in conjunction with a suitable splitting of the solu...

متن کامل

COMPARING NUMERICAL METHODS FOR THE SOLUTION OF THE DAMPED FORCED OSCILLATOR PROBLEM

In this paper, we present a comparative study between the Adomian decomposition method and two classical well-known Runge-Kutta and central difference methods for the solution of damped forced oscillator problem. We show that the Adomian decomposition method for this problem gives more accurate approximations relative to other numerical methods and is easier to apply. 

متن کامل

Vibration and Bifurcation Analysis of a Nonlinear Damped Mass Grounded System

In this paper, vibrations and bifurcation of a damped system consists of a mass grounded by linear and nonlinear springs and a nonlinear damper is studied. Nonlinear equation of motion is derived using Newton’s equations. Approximate analytical solutions are obtained using multiple time scales (MTS) method. For free vibration, the approximate analytical results are compared with the numerical i...

متن کامل

Analytical Solution for the Forced Vibrations of a Nano-Resonator with Cubic Nonlinearities Using Homotopy Analysis Method

Many of nonlinear systems in the field of engineering such as nano-resonator and atomic force microscope can be modeled based on Duffing equation. Analytical frequency response of this system helps us analyze different interesting nonlinear behaviors appearing in its response due to its rich dynamics. In this paper, the general form of Duffing equation with cubic nonlinearity as well as par...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011