Scalar dissipation rate and dissipative anomaly in isotropic turbulence

نویسندگان

  • D. A. DONZIS
  • K. R. SREENIVASAN
  • P. K. YEUNG
  • D. A. Donzis
  • K. R. Sreenivasan
  • P. K. Yeung
چکیده

We examine available data from experiment and recent numerical simulations to explore the supposition that the scalar dissipation rate in turbulence becomes independent of the fluid viscosity when the viscosity is small and of scalar diffusivity when the diffusivity is small. The data are interpreted in the context of semi-empirical spectral theory of Obukhov and Corrsin when the Schmidt number, Sc, is below unity, and of Batchelor’s theory when Sc is above unity. Practical limits in terms of the Taylor-microscale Reynolds number, Rλ, as well as Sc, are deduced for scalar dissipation to become sensibly independent of molecular properties. In particular, we show that such an asymptotic state is reached if RλSc 1/2 1 for Sc< 1, and if ln(Sc)/Rλ 1 for Sc> 1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixing characteristics of an inhomogeneous scalar in isotropic and homogeneous sheared turbulence

Turbulent mixing of an inhomogeneous passive scalar field is studied in the context of a nonpremixed reacting flow. Direct numerical simulations of an initial steplike scalar field subjected to homogeneous sheared turbulence have been performed and the results compared with those of the case of decaying isotropic turbulence. For both flow conditions, the gradient of the conserved scalar tends t...

متن کامل

Simulation of Low Reynolds Number Isotropic Turbulence Including the Passive Scalar

Full simulations of homogeneous isotropic turbulence containing a homogeneous passive scalar were made at low Reynolds numbers and various Prandtl numbers. The results show that the spectral behavior of the two fields are quite similar; both fields decay as power-law functions of time. However. the decay exponent is quite dependent on both the Reynolds and Prandtl numbers. The decay exponent of...

متن کامل

Taylor ’ s dissipation surrogate and its associated anomaly

It is shown that, for stationary isotropic turbulence, Taylor’s well known dissipation surrogate Du/L can be derived directly from the Karman-Howarth equation and is in fact a surrogate for inertial transfer, which becomes equal to the dissipation, as the Reynolds number tends to infinity. The expression found for the dissipation rate ε is ε = A3u ′3 L [

متن کامل

Compressibility effects on the scalar mixing in reacting homogeneous turbulence

The compressibility and heat of reaction influence on the scalar mixing in decaying isotropic turbulence and homogeneous shear flow are examined via data generated by direct numerical simulations (DNS). The reaction is modeled as one-step, exothermic, irreversible and Arrhenius type. For the shear flow simulations, the scalar dissipation rate, as well as the time scale ratio of mechanical to sc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005